Zobrazeno 1 - 10
of 1 980
pro vyhledávání: '"Glazkova IS"'
Keyphrase selection is a challenging task in natural language processing that has a wide range of applications. Adapting existing supervised and unsupervised solutions for the Russian language faces several limitations due to the rich morphology of R
Externí odkaz:
http://arxiv.org/abs/2410.18040
Autor:
Glazkova, Anna, Morozov, Dmitry
Keyphrase selection plays a pivotal role within the domain of scholarly texts, facilitating efficient information retrieval, summarization, and indexing. In this work, we explored how to apply fine-tuned generative transformer-based models to the spe
Externí odkaz:
http://arxiv.org/abs/2409.10640
Autor:
Shikin, A. M., Zaitsev, N. L., Estyunina, T. P., Estyunin, D. A., Rybkin, A. G., Glazkova, D. A., Klimovskikh, I. I., Eryzhenkov, A. V., Kokh, K. A., Golyashov, V. A., Tereshchenko, O. E., Ideta, S., Miyai, Y., Iwata, T., Kosa, T., Kuroda, K., Shimada, K., Tarasov, A. V.
Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap
Externí odkaz:
http://arxiv.org/abs/2406.15065
Autor:
Glazkova, Anna, Morozov, Dmitry
Publikováno v:
Communications in Computer and Information Science, vol 2086, pp. 249--265
Modern models for text generation show state-of-the-art results in many natural language processing tasks. In this work, we explore the effectiveness of abstractive text summarization models for keyphrase selection. A list of keyphrases is an importa
Externí odkaz:
http://arxiv.org/abs/2312.10700
Autor:
Glazkova, Anna
The paper describes a system developed for Task 1 at SMM4H 2023. The goal of the task is to automatically distinguish tweets that self-report a COVID-19 diagnosis (for example, a positive test, clinical diagnosis, or hospitalization) from those that
Externí odkaz:
http://arxiv.org/abs/2311.00732
Autor:
D. S. Leontyev, F. A. Urusov, D. V. Glazkova, B. V. Belugin, O. V. Orlova, R. R. Mintaev, G. M. Tsyganova, E. V. Bogoslovskaya, G. A. Shipulin
Publikováno v:
Биопрепараты: Профилактика, диагностика, лечение, Vol 24, Iss 3, Pp 312-321 (2024)
INTRODUCTION. Despite existing treatment methods, complete eradication of human immunodeficiency virus (HIV) infection remains an unattainable goal due to the high variability of HIV type 1 (HIV-1). HIV infection necessitates life-long administration
Externí odkaz:
https://doaj.org/article/b076f82274424b8192a6f8cb79b849bc
Autor:
Eremeev, S. V., Glazkova, D., Poelchen, G., Kraiker, A., Ali, K., Tarasov, A. V., Schulz, S., Kliemt, K., Chulkov, E. V., Stolyarov, V. S., Ernst, A., Krellner, C., Usachov, D. Yu., Vyalikh, D. V.
Publikováno v:
Nanoscale Adv., 2023,5, 6678-6687
The discovery of a square magnetic-skyrmion lattice in GdRu$_2$Si$_2$, with the smallest so far found skyrmion diameter and without a geometrically frustrated lattice, has attracted significant attention, particularly for potential applications in me
Externí odkaz:
http://arxiv.org/abs/2306.01370
Autor:
Glazkova, Anna
Publikováno v:
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pp. 1317-1323
The paper describes a transformer-based system designed for SemEval-2023 Task 9: Multilingual Tweet Intimacy Analysis. The purpose of the task was to predict the intimacy of tweets in a range from 1 (not intimate at all) to 5 (very intimate). The off
Externí odkaz:
http://arxiv.org/abs/2304.04054
Publikováno v:
Моделирование и анализ информационных систем, Vol 31, Iss 2, Pp 206-220 (2024)
The text complexity assessment is an applied problem of current interest with potential application in the drafting of legal documents, editing textbooks, and selecting books for extracurricular reading. The methods for generating a feature vector wh
Externí odkaz:
https://doaj.org/article/d6daf9bb110a47beb0c56dcaf65ecc31
Autor:
Glazkova, Anna, Glazkov, Maksim
Publikováno v:
Proceedings of the Third Workshop on Scholarly Document Processing, 223-228, 2022
The paper describes neural models developed for the DAGPap22 shared task hosted at the Third Workshop on Scholarly Document Processing. This shared task targets the automatic detection of generated scientific papers. Our work focuses on comparing dif
Externí odkaz:
http://arxiv.org/abs/2209.08283