Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Glaser, Lisa"'
Autor:
Glaser, Lisa
The $2$d orders are a sub class of causal sets, which is especially amenable to computer simulations. Past work has shown that the $2$d orders have a first order phase transition between a random and a crystalline phase. When coupling the $2$d orders
Externí odkaz:
http://arxiv.org/abs/2011.13875
Autor:
Glaser, Lisa, Stern, Abel B.
We explore the geometric implications of introducing a spectral cut-off on Riemannian manifolds. This is naturally phrased in the framework of non-commutative geometry, where we work with spectral triples that are \emph{truncated} by spectral project
Externí odkaz:
http://arxiv.org/abs/1912.09227
Autor:
Glaser, Lisa, Stern, Abel
Publikováno v:
Journal of Mathematical Physics 61, 033507 (2020)
When aiming to apply mathematical results of non-commutative geometry to physical problems the question arises how they translate to a context in which only a part of the spectrum is known. In this article we aim to detect when a finite-dimensional t
Externí odkaz:
http://arxiv.org/abs/1909.08054
A finite non-commutative geometry consists of a fuzzy space together with a Dirac operator satisfying the axioms of a real spectral triple. This paper addreses the question of how to extract information about these geometries from the spectrum of the
Externí odkaz:
http://arxiv.org/abs/1902.03590
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Glaser, Lisa, Steinhaus, Sebastian
Publikováno v:
Universe 2019, 5, 35
Computer simulations allow us to explore non-perturbative phenomena in physics. This has the potential to help us understand quantum gravity. Finding a theory of quantum gravity is a hard problem, but in the last decades many promising and intriguing
Externí odkaz:
http://arxiv.org/abs/1811.12264
Autor:
Glaser, Lisa
In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in te
Externí odkaz:
http://arxiv.org/abs/1802.02519
We study the $N$-dependent behaviour of $\mathrm{2d}$ causal set quantum gravity. This theory is known to exhibit a phase transition as the analytic continuation parameter $\beta$, akin to an inverse temperature, is varied. Using a scaling analysis w
Externí odkaz:
http://arxiv.org/abs/1706.06432
Autor:
Glaser, Lisa
Publikováno v:
J. Phys. A: Math. Theor. 50 275201 (2017)
Random non-commutative geometries are a novel approach to taking a non-perturbative path integral over geometries. They were introduced in arxiv.org/abs/1510.01377, where a first examination was performed. During this examination we found that some g
Externí odkaz:
http://arxiv.org/abs/1612.00713
Publikováno v:
Phys. Rev. D 94, 064014 (2016)
Causal Dynamical Triangulations (CDT) is a non-perturbative quantisation of general relativity. Ho\v{r}ava-Lifshitz gravity on the other hand modifies general relativity to allow for perturbative quan- tisation. Past work has given rise to the specul
Externí odkaz:
http://arxiv.org/abs/1605.09618