Zobrazeno 1 - 10
of 137
pro vyhledávání: '"Gladiali, Francesca"'
Autor:
Gladiali, Francesca, Grossi, Massimo
In this paper we are concerned with the number of critical points of solutions of nonlinear elliptic equations. We will deal with the case of non-convex, contractile and non-contractile planar domains. We will prove results on the estimate of their n
Externí odkaz:
http://arxiv.org/abs/2310.04767
Let $\Omega\subset\mathbb{R}^N$ be a smooth bounded domain with $N\ge2$ and $\Omega_\epsilon=\Omega\backslash B(P,\epsilon)$ where $B(P,\epsilon)$ is the ball centered at $P\in\Omega$ and radius $\epsilon$. In this paper, we establish the number, loc
Externí odkaz:
http://arxiv.org/abs/2202.10895
Autor:
Greco, Antonio, Gladiali, Francesca
In this manuscript we consider semilinear PDEs, with a convex nonlinearity, in a sector-like domain. Using cylindrical coordinates $(r, \theta, z)$, we investigate the shape of solutions whose derivative in $\theta$ vanishes at the boundary. We prove
Externí odkaz:
http://arxiv.org/abs/2201.11988
In this paper we consider nodal radial solutions of the problem $$ \begin{cases} -\Delta u=|u|^{2^*-2}u+\lambda u&\text{ in }B,\\ u=0&\text{ on }\partial B \end{cases} $$ where $2^*=\frac{2N}{N-2}$ with $3\le N\le6$ and $B$ is the unit ball of $\R^N$
Externí odkaz:
http://arxiv.org/abs/2010.12311
In this paper, we prove existence of multiple non-radial solutions to the Hardy-Sobolev equation $$\begin{cases} -\Delta u-\displaystyle\frac \gamma{|x|^2}u=\displaystyle\frac{1}{|x|^s}|u|^{p_s-2}u & \text{ in } \mathbb{R}^N\setminus\{0\},\\ u\geq 0,
Externí odkaz:
http://arxiv.org/abs/2009.04195
Autor:
Gladiali, Francesca, Stegel, Giovanni
In this paper we consider some nodal solutions of the H\'enon problem in the unit disc with Dirichlet boundary conditions and we show that they are quasiradial, that is to say they are nonradial, they have two nodal regions and their nodal line does
Externí odkaz:
http://arxiv.org/abs/2001.10850
We consider the Dirichlet problem $-\Delta u=\lambda f(u)$ with $\lambda<0$ and $f$ non-negative and non-decreasing. We show existence and uniqueness of solutions $u_\lambda$ for any $\lambda$ and discuss their asymptotic behavior as $\lambda\to-\inf
Externí odkaz:
http://arxiv.org/abs/1911.03152
Autor:
Gladiali, Francesca, Grossi, Massimo
In this paper we construct families of bounded domains $\Omega_\varepsilon$ and solutions $u_\varepsilon$ of \[\begin{cases} -\Delta u_\varepsilon=1&\text{ in }\ \Omega_\varepsilon\\ u_\varepsilon=0&\text{ on }\ \partial\Omega_\varepsilon \end{cases}
Externí odkaz:
http://arxiv.org/abs/1907.09895
By using a characterization of the Morse index and the degeneracy in terms of a singular one dimensional eigenvalue problem given in a previous paper, we give a lower bound for the Morse index of radial solutions to H\'enon type problems \[ \left\{\b
Externí odkaz:
http://arxiv.org/abs/1906.00368
Publikováno v:
Journal of differential equations 2020
In this paper we consider the H\'enon problem in the unit disc with Dirichlet boundary conditions. We study the asymptotic profile of least energy and nodal least energy radial solutions and then deduce the exact computation of their Morse index for
Externí odkaz:
http://arxiv.org/abs/1904.05907