Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Giuseppina Vannella"'
Autor:
Giuseppina Vannella
Let us consider the quasilinear problem \[ (P_\varepsilon) \ \ \left\{ \begin{array}{ll} - \varepsilon^p \Delta _{p}u + u^{p-1} = f(u) & \hbox{in} \ \Omega \newline u>0 & \hbox{in} \ \Omega \newline u=0 & \hbox{on} \ \partial \Omega \end{array} \righ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d4f76fcab48157bac6e9e15aa25c3b4
https://hdl.handle.net/11589/226697
https://hdl.handle.net/11589/226697
Publikováno v:
Electronic Journal of Differential Equations, Vol 2003, Iss 78, Pp 1-13 (2003)
In this work we study a class of functionals, defined on Banach spaces, associated with quasilinear elliptic systems. Firstly, we prove some regularity results about the critical points of such functionals and then we estimate the critical groups in
Externí odkaz:
https://doaj.org/article/a63daa77bb83476182c8f9abf2cf91a2
Autor:
Giuseppina Vannella, Silvia Cingolani
Publikováno v:
Journal of Differential Equations. 266:4510-4532
In this paper we consider the quasilinear critical problem ( P λ ) { − Δ p u = λ u q − 1 + u p ⁎ − 1 in Ω u > 0 in Ω u = 0 on ∂ Ω where Ω is a regular bounded domain in R N , N ≥ p 2 , 1 p 2 , p ≤ q p ⁎ , p ⁎ = N p / ( N −
The existence of a nontrivial solution is proved for a class of quasilinear elliptic equations involving, as principal part, either the p-Laplace operator or the operator related to the p-area functional, and a nonlinearity with p-linear growth at in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2aeae9c6f199ddad3ba182d894bb7f97
http://hdl.handle.net/10807/116639
http://hdl.handle.net/10807/116639
Publikováno v:
Rendiconti Lincei - Matematica e Applicazioni. 26:49-56
Autor:
Silvia Cingolani, Giuseppina Vannella
Publikováno v:
Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 26(2):397-413
We deal with the existence of solutions for the quasilinear problem ( P λ ) { − Δ p u = λ u q − 1 + u p ∗ − 1 in Ω , u > 0 in Ω , u = 0 on ∂ Ω , where Ω is a bounded domain in R N with smooth boundary, N ⩾ p 2 , 1 p ⩽ q p ∗ , p
We consider a class of quasilinear elliptic equations whose principal part includes the p-area and the p-Laplace operators, when p lies in a suitable left neighborhood of 2. For the critical points of the associated functional, we provide estimates o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::acc0c6e9dfc4814cc017667544fd0315
http://hdl.handle.net/11589/20144
http://hdl.handle.net/11589/20144
Autor:
Giuseppina Vannella, Silvia Cingolani
Publikováno v:
Mediterranean Journal of Mathematics. 3:495-512
In this work we consider a class of Euler functionals defined in Banach spaces, associated to quasilinear elliptic problems involving the critical Sobolev exponent. We perform critical groups estimates via the Morse index.
Publikováno v:
Communications in Contemporary Mathematics. :227-249
In this work we prove some multiplicity results for solutions of a system of elliptic quasilinear equations, involving the p-Laplace operator (p > 2). The proof are based on variational and topological arguments and makes use of new perturbation resu
Autor:
Giuseppina Vannella
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 59:283-304
Two equivariant problems of the form e Δ u = ∇ F u are considered, where F is a real function which is invariant under the action of a group G , and, using Morse theory, for each problem an arbitrarily great number of orbits of solutions is founde