Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Giuseppina Di Blasio"'
In this paper we study a class of nonlinear anisotropic parabolic problems in bounded domains. In detail, we study the influences of the initial data and the forcing term f on the behavior of the solutions. We prove existence and uniqueness results.
Externí odkaz:
http://arxiv.org/abs/2405.13410
Autor:
Giuseppina Di Blasio, Filomena Feo
Publikováno v:
Le Matematiche, Vol 61, Iss 2, Pp 245-274 (2006)
We prove existence and regularity results for weak solutions to nonlinear elliptic equations.
Externí odkaz:
https://doaj.org/article/dbd13bc19cb147859954e6cb7cdc9e32
Publikováno v:
van den Berg, M, Della Pietra, F, di Blasio, G & Gavitone, N 2021, ' Efficiency and localisation for the first Dirichlet eigenfunction ', Journal of Spectral Theory, vol. 11, no. 3, pp. 981-1003 . https://doi.org/10.4171/JST/363
Bounds are obtained for the efficiency or mean to peak ratio $E(\Omega)$ for the first Dirichlet eigenfunction (positive) for open, connected sets $\Omega$ with finite measure in Euclidean space $\R^m$. It is shown that (i) localisation implies vanis
Publikováno v:
Mathematika. 66:765-776
We study the dependence of the first eigenvalue of the Finsler $p$-Laplacian and the corresponding eigenfunctions upon perturbation of the domain and we generalize a few results known for the standard $p$-Laplacian. In particular, we prove a Frech\'{
In this paper we focus our attention on an embedding result for a weighted Sobolev space that involves as weight the distance function from the boundary taken with respect to a general smooth gauge function $F$. Starting from this type of inequalitie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::36977f85f27bdf86be65c256184dec87
https://hdl.handle.net/11591/418052
https://hdl.handle.net/11591/418052
Publikováno v:
Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 278-291 (2018)
In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λ F ( p , Ω ) {\lambda_{F}(p,\Omega)} of the anisotropic p-Laplacian, 1 < p < + ∞ {1 . Our aim is to enhance, by means of the 𝒫
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d0c293419d635fb2ed5cbe7360a0a5e2
http://hdl.handle.net/11588/726524
http://hdl.handle.net/11588/726524
Denote with $\mu _{1}(\Omega ;e^{h( |x|) })$ the first nontrivial eigenvalue of the Neumann problem \begin{eqnarray} &-div( e^{h( |x|) }\nabla u) =\mu e^{h(|x|) }u \quad in \ \Omega \\ &\frac{\partial u}{\partial \nu }=0 \quad on \ \partial \Omega, \
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bfda92abfe7bf7ee692f83dfc04683c
http://hdl.handle.net/11588/596366
http://hdl.handle.net/11588/596366
Publikováno v:
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni (Testo stamp.) 28 (2017): 305–322. doi:10.4171/RLM/764
info:cnr-pdr/source/autori:Alberico A.; Blasio G.D.; Feo F./titolo:Comparison results for nonlinear anisotropic parabolic problems/doi:10.4171%2FRLM%2F764/rivista:Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni (Testo stamp.)/anno:2017/pagina_da:305/pagina_a:322/intervallo_pagine:305–322/volume:28
info:cnr-pdr/source/autori:Alberico A.; Blasio G.D.; Feo F./titolo:Comparison results for nonlinear anisotropic parabolic problems/doi:10.4171%2FRLM%2F764/rivista:Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni (Testo stamp.)/anno:2017/pagina_da:305/pagina_a:322/intervallo_pagine:305–322/volume:28
Comparison results for solutions to the Dirichlet problems for a class of nonlinear, anisotropic parabolic equations are established. These results are obtained through a semi-discretization method in time after providing estimates for solutions to a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4cd370c14a70f61c746bb679654521d1
http://hdl.handle.net/11591/368810
http://hdl.handle.net/11591/368810
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783319415369
Estimates for solutions to homogeneous Dirichlet problems for a class of elliptic equations with zero order term in the form \(L(u)= g(x, u) + f(x)\), where the operator L fulfills an anisotropic elliptic condition, are established. Such estimates ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c0729628e935363526c83887e8497b6
http://hdl.handle.net/11591/368620
http://hdl.handle.net/11591/368620
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Publicacions Matemàtiques; Vol. 61, Núm. 1 (2017); p. 213-228
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 61, no. 1 (2017), 213-238
Recercat. Dipósit de la Recerca de Catalunya
instname
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Publicacions Matemàtiques; Vol. 61, Núm. 1 (2017); p. 213-228
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 61, no. 1 (2017), 213-238
Recercat. Dipósit de la Recerca de Catalunya
instname
In this paper we prove existence results and asymptotic behavior for strong solutions $u\in W^{2,2}_{\textrm{loc}}(\Omega)$ of the nonlinear elliptic problem \begin{equation} \tag{P} \label{abstr} \left\{ \begin{array}{ll} -\Delta_{H}u+H(\nabla u)^{q
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::07af46b77540e20716b9c36314339cc1