Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Giulio Caviglia"'
Autor:
Giulio Caviglia, Alessio Sammartano
Publikováno v:
Journal of Algebra. 619:538-557
Let $ e_1, ..., e_c $ be positive integers and let $ Y \subseteq \mathbb{P}^n$ be the monomial complete intersection defined by the vanishing of $x_1^{e_1}, ..., x_c^{e_c}$. In this paper we study sharp upper bounds on the number of equations and syz
In this survey paper, we first present the main properties of sequentially Cohen–Macaulay modules. Some basic examples are provided to help the reader with quickly getting acquainted with this topic. We then discuss two generalizations of the notio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a2700440b3dd3d91c3f3063a86d61061
http://arxiv.org/abs/2304.06609
http://arxiv.org/abs/2304.06609
Autor:
Giulio Caviglia, Alessandro De Stefani
Publikováno v:
Proceedings of the American Mathematical Society. 150:1397-1404
We estimate the Castelnuovo-Mumford regularity of ideals in a polynomial ring over a field by studying the regularity of certain modules generated in degree zero and with linear relations. In dimension one, this process gives a new type of upper boun
Autor:
Giulio Caviglia, Alessandro De Stefani
Publikováno v:
Bulletin of the London Mathematical Society. 53:1185-1195
Autor:
Giulio Caviglia
Green's general hyperplane restriction theorem gives a sharp upper bound for the Hilbert function of a standard graded algebra over and infinite field K modulo a general linear form. We strengthen Green's result by showing that the linear forms that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d0b07f580666dca3cdb9cd21e8cd6f0
http://arxiv.org/abs/2104.11836
http://arxiv.org/abs/2104.11836
Autor:
Giulio Caviglia, Alessandro De Stefani
We introduce the notion of E-depth of graded modules over polynomial rings to measure the depth of certain Ext modules. First, we characterize graded modules over polynomial rings with (sufficiently) large E-depth as those modules whose (sufficiently
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7fa582ff4179ab3fa14c8fcb77cab27d
http://hdl.handle.net/11567/1067842
http://hdl.handle.net/11567/1067842
Publikováno v:
Commutative Algebra ISBN: 9783030896935
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16447bf87857bf75b29d6ca4d5c8e36c
https://doi.org/10.1007/978-3-030-89694-2_5
https://doi.org/10.1007/978-3-030-89694-2_5
Autor:
Alessio Sammartano, Giulio Caviglia
Publikováno v:
Advances in Mathematics. 340:284-299
Let $S$ be a polynomial ring over a field and $I\subseteq S$ a homogeneous ideal containing a regular sequence of forms of degrees $d_1, \ldots, d_c$. In this paper we prove the Lex-plus-powers Conjecture when the field has characteristic 0 for all r
Publikováno v:
Mathematische Zeitschrift
Mathematische Zeitschrift, Springer, 2019, 291 (1-2), pp.421-435. ⟨10.1007/s00209-018-2089-y⟩
Mathematische Zeitschrift, Springer, 2019, 291 (1-2), pp.421-435. ⟨10.1007/s00209-018-2089-y⟩
International audience; We answer several natural questions which arise from the recent paper [MP] of McCullough and Peeva providing counterexamples to the Eisenbud-Goto Regularity Conjecture. We give counterexamples using Rees algebras, and also con
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4fe69386929c3f6bb58ff0f3f121a14f
https://hal.archives-ouvertes.fr/hal-03004657/document
https://hal.archives-ouvertes.fr/hal-03004657/document
We study the relationship between depth and regularity of a homogeneous ideal I and those of (I,f) and I:f, where f is a linear form or a monomial. Our results has several interesting consequences on depth and regularity of edge ideals of hypegraphs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5359d21c75274958ead2d07469fb421
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85041191355
https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&origin=inward&scp=85041191355