Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Giuliano Niccoli"'
Publikováno v:
SciPost Physics, Vol 16, Iss 4, p 099 (2024)
This paper is a continuation of [J. Phys. A: Math. Theor. 55, 405203 (2022)], in which a set of matrix elements of local operators was computed for the XXZ spin-1/2 open chain with a particular case of unparallel boundary fields. Here, we extend thes
Externí odkaz:
https://doaj.org/article/5a9147a3f0b7436b9bf043851ce680cd
Publikováno v:
SciPost Physics, Vol 10, Iss 1, p 006 (2021)
We explain how to compute correlation functions at zero temperature within the framework of the quantum version of the Separation of Variables (SoV) in the case of a simple model: the XXX Heisenberg chain of spin 1/2 with twisted (quasi-periodic)
Externí odkaz:
https://doaj.org/article/ec214972213d4360812d18fc2b26f315
Publikováno v:
SciPost Physics, Vol 9, Iss 4, p 060 (2020)
We construct quantum Separation of Variables (SoV) bases for both the fundamental inhomogeneous $gl_{\mathcal{M}|\mathcal{N}}$ supersymmetric integrable models and for the inhomogeneous Hubbard model both defined with quasi-periodic twisted bounda
Externí odkaz:
https://doaj.org/article/056e978c62d04f77a3c9e3973d5c1073
Publikováno v:
SciPost Physics, Vol 6, Iss 6, p 071 (2019)
We apply our new approach of quantum Separation of Variables (SoV) to the complete characterization of the transfer matrix spectrum of quantum integrable lattice models associated to gl(n)-invariant R-matrices in the fundamental representations. W
Externí odkaz:
https://doaj.org/article/a5afcb3651a64142bc4cd6232ebf198f
Publikováno v:
SciPost Physics, Vol 2, Iss 1, p 009 (2017)
We study the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazhanov-Stroganov Lax operator. The results apply as well to the spectral analysis of the lattice sine
Externí odkaz:
https://doaj.org/article/1db116920fb8493abbe654db34fb9984
Autor:
J. M. Maillet, Giuliano Niccoli
Publikováno v:
SciPost Physics, Vol 10, Iss 2, p 026 (2021)
SciPost Physics
SciPost Physics, SciPost Foundation, 2021, 10 (2), pp.026. ⟨10.21468/SciPostPhys.10.2.026⟩
scipost.org
SciPost Physics, 2021, 10 (2), pp.026. ⟨10.21468/SciPostPhys.10.2.026⟩
SciPost Physics
SciPost Physics, SciPost Foundation, 2021, 10 (2), pp.026. ⟨10.21468/SciPostPhys.10.2.026⟩
scipost.org
SciPost Physics, 2021, 10 (2), pp.026. ⟨10.21468/SciPostPhys.10.2.026⟩
We describe the extension, beyond fundamental representations of the Yang-Baxter algebra, of our new construction of separation of variables bases for quantum integrable lattice models. The key idea underlying our approach is to use the commuting con
Publikováno v:
SciPost Physics
SciPost Physics, 2021, 10 (1), pp.006. ⟨10.21468/SciPostPhys.10.1.006⟩
SciPost Physics, Vol 10, Iss 1, p 006 (2021)
SciPost Physics, SciPost Foundation, 2021, 10 (1), pp.006. ⟨10.21468/SciPostPhys.10.1.006⟩
SciPost Physics, 2021, 10 (1), ⟨10.21468/SciPostPhys.10.1.006⟩
SciPost Physics, SciPost Foundation, 2021, 10 (1), ⟨10.21468/SciPostPhys.10.1.006⟩
SciPost Physics, 2021, 10 (1), pp.006. ⟨10.21468/SciPostPhys.10.1.006⟩
SciPost Physics, Vol 10, Iss 1, p 006 (2021)
SciPost Physics, SciPost Foundation, 2021, 10 (1), pp.006. ⟨10.21468/SciPostPhys.10.1.006⟩
SciPost Physics, 2021, 10 (1), ⟨10.21468/SciPostPhys.10.1.006⟩
SciPost Physics, SciPost Foundation, 2021, 10 (1), ⟨10.21468/SciPostPhys.10.1.006⟩
We explain how to compute correlation functions at zero temperature within the framework of the quantum version of the Separation of Variables (SoV) in the case of a simple model: the XXX Heisenberg chain of spin 1/2 with twisted (quasi-periodic) bou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bf01ff83ee27ee760a3e22e44ef9c39e
https://hal.science/hal-02634723
https://hal.science/hal-02634723
Publikováno v:
SciPost Physics, Vol 9, Iss 6, p 086 (2020)
SciPost Physics
SciPost Physics, SciPost Foundation, 2020, 9, pp.086. ⟨10.21468/SciPostPhys.9.6.086⟩
SciPost Physics, 2020, 9, pp.086. ⟨10.21468/SciPostPhys.9.6.086⟩
SciPost Physics
SciPost Physics, SciPost Foundation, 2020, 9, pp.086. ⟨10.21468/SciPostPhys.9.6.086⟩
SciPost Physics, 2020, 9, pp.086. ⟨10.21468/SciPostPhys.9.6.086⟩
Using the framework of the quantum separation of variables (SoV) for higher rank quantum integrable lattice models [1], we introduce some foundations to go beyond the obtained complete transfer matrix spectrum description, and open the way to the com
Publikováno v:
SciPost Phys.
SciPost Phys., 2020, 9, pp.060. ⟨10.21468/SciPostPhys.9.4.060⟩
SciPost Physics
SciPost Physics, SciPost Foundation, 2020, ⟨10.21468/SciPostPhys.9.4.060⟩
SciPost Physics, 2020, ⟨10.21468/SciPostPhys.9.4.060⟩
SciPost Physics, Vol 9, Iss 4, p 060 (2020)
SciPost Phys., 2020, 9, pp.060. ⟨10.21468/SciPostPhys.9.4.060⟩
SciPost Physics
SciPost Physics, SciPost Foundation, 2020, ⟨10.21468/SciPostPhys.9.4.060⟩
SciPost Physics, 2020, ⟨10.21468/SciPostPhys.9.4.060⟩
SciPost Physics, Vol 9, Iss 4, p 060 (2020)
We construct quantum Separation of Variables (SoV) bases for both the fundamental inhomogeneous $gl_{\mathcal{M}|\mathcal{N}}$ supersymmetric integrable models and for the inhomogeneous Hubbard model both defined with quasi-periodic twisted boundary
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f901685554aee3d17166df1640f4152a
https://hal.archives-ouvertes.fr/hal-02272662
https://hal.archives-ouvertes.fr/hal-02272662
Autor:
Giuliano Niccoli, J. M. Maillet
Publikováno v:
Journal of Statistical Mechanics: Theory and Experiment
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2019, ⟨10.1088/1742-5468/ab357a⟩
Journal of Statistical Mechanics: Theory and Experiment, 2019, ⟨10.1088/1742-5468/ab357a⟩
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2019, ⟨10.1088/1742-5468/ab357a⟩
Journal of Statistical Mechanics: Theory and Experiment, 2019, ⟨10.1088/1742-5468/ab357a⟩
We implement our new Separation of Variables (SoV) approach for open quantum integrable models associated to higher rank representations of the reflection algebras. We construct the (SoV) basis for the fundamental representations of the $Y(gl_n)$ ref
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b3b006fb5bf81716404048b840dc2a0
https://hal.archives-ouvertes.fr/hal-02101693
https://hal.archives-ouvertes.fr/hal-02101693