Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Giuliano G. La Guardia"'
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Abstract The Lindblad master equation describes the evolution of a large variety of open quantum systems. An important property of some open quantum systems is the existence of decoherence-free subspaces. A quantum state from a decoherence-free subsp
Externí odkaz:
https://doaj.org/article/4a56e8202178428980184cad5892a9d2
Autor:
Giuliano G. La Guardia, Jocemar Q. Chagas, Ervin K. Lenzi, Leonardo Pires, Nicolás Zumelzu, Benjamín Bedregal
Publikováno v:
Axioms, Vol 13, Iss 5, p 308 (2024)
In this paper, we expand the theory of semi-vector spaces and semi-algebras, both over the semi-field of nonnegative real numbers R0+. More precisely, we prove several new results concerning these theories. We introduce to the literature the concept
Externí odkaz:
https://doaj.org/article/0802f209f420461a9001812f8d2fb1b0
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 4, Iss , Pp 100090- (2021)
In this note, a numerical method based on finite differences to solve a class of nonlinear advection–diffusion fractional differential equation is proposed. The fractional operator considered here is the fractional Riemann–Liouville derivative or
Externí odkaz:
https://doaj.org/article/4903694205144097acf0cd574ef9770f
Publikováno v:
Axiomathes. 32:1059-1103
Autor:
Giuliano G. La Guardia, Leonardo Pires
Publikováno v:
Qualitative Theory of Dynamical Systems. 20
In this paper we consider finite dimensional dynamical systems generated by a Lipschitz function. We prove a version of the Whitney’s Extension Theorem on compact manifolds to obtain a version of the well-known λ-lemma for Lipschitz functions. The
Publikováno v:
Advanced Numerical Methods for Differential Equations ISBN: 9781003097938
Advanced Numerical Methods for Differential Equations
Advanced Numerical Methods for Differential Equations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a4eb789946221e056541d41ac873fa74
https://doi.org/10.1201/9781003097938-7
https://doi.org/10.1201/9781003097938-7
The Lindblad master equation describes the evolution of a large variety of open quantum systems. An important property of some open quantum systems is the existence of decoherence-free subspaces. A quantum state from a decoherence-free subspace will
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e555ec50dc4fe96f46cc7472f28ede7
Publikováno v:
IEEE Transactions on Communications, 67(1):8490857, 73-82. Institute of Electrical and Electronics Engineers
In this paper, we construct new families of classical convolutional codes (CCC's) and new families of quantum convolutional codes (QCC's). The CCC's are derived from (block) algebraic geometry (AG) codes. Furthermore, new families of CCC's are constr
Autor:
Giuliano G. La Guardia
Publikováno v:
Linear and Multilinear Algebra. 67:1483-1494
In this paper, we construct new sequences of asymptotically good convolutional codes (AGCC’s). These sequences are obtained from sequences of transitive, self-orthogonal and self-dual algebraic geo...
Autor:
Francisco Revson Fernandes Pereira, Giuliano G. La Guardia, Ruud Pellikaan, Francisco M. de Assis
Publikováno v:
Proceedings of the WCC 2019: The Eleventh International Workshop on Coding and Cryptography
arXiv, 2019:1907.06357v1. Cornell University Library
arXiv, 2019:1907.06357v1. Cornell University Library
Quantum error correcting codes play the role of suppressing noise and decoherence in quantum systems by introducing redundancy. Some strategies can be used to improve the parameters of these codes. For example, entanglement can provide a way for quan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f16a2f8b3e6fc59d3bd115bd9e5a0a8
http://arxiv.org/abs/1907.06357
http://arxiv.org/abs/1907.06357