Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Giulia Saccà"'
Publikováno v:
Revista Matemática Contemporânea. 47
Using the Laza-Sacca-Voisin construction, we give a simple proof for the fact that the Euler characteristic of a hyper-Kahler manifold of OG10 type is 176,904, a result previously established by Mozgovoy.
Autor:
Giulia Saccà
Publikováno v:
Transactions of the American Mathematical Society. 371:7791-7843
Autor:
Enrico Arbarello, Giulia Saccà
Publikováno v:
arXiv
The aim of this paper is to study the singularities of certain moduli spaces of sheaves on K3 surfaces by means of Nakajima quiver varieties. The singularities in question arise from the choice of a non--generic polarization, with respect to which we
Publikováno v:
Compositio Mathematica. 154:984-1013
We realize O’Grady’s six-dimensional example of an irreducible holomorphic symplectic (IHS) manifold as a quotient of an IHS manifold of$\text{K3}^{[3]}$type by a birational involution, thereby computing its Hodge numbers.
Publikováno v:
Annales de l'Institut Fourier. 68:2837-2882
Publikováno v:
Acta Math. 218, no. 1 (2017), 55-135
Let $X$ be a general cubic $4$-fold. It was observed by Donagi and Markman that the relative intermediate Jacobian fibration $\mathcal{J}_U/U$ (with $U=(\mathbb{P}^5)^\vee\setminus X^\vee$) associated with the family of smooth hyperplane sections of
Publikováno v:
Journal de Mathématiques Pures et Appliquées
We determine the Hodge numbers of the hyper-K\"ahler manifold known as O'Grady 10 by studying some related modular Lagrangian fibrations by means of a refinement of the Ng\^o Support Theorem.
Comment: Revised and final version to appear in Jour.
Comment: Revised and final version to appear in Jour.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e77a50d266105979f1776d33fad962a
http://arxiv.org/abs/1905.03217
http://arxiv.org/abs/1905.03217
Let $p_1,\dots, p_9$ be the points in $\mathbb A^2(\mathbb Q)\subset \mathbb P^2(\mathbb Q)$ with coordinates $$(-2,3),(-1,-4),(2,5),(4,9),(52,375), (5234, 37866),(8, -23), (43, 282), \Bigl(\frac{1}{4}, -\frac{33}{8} \Bigr)$$ respectively. We prove t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::434880ed90a49994dd0278718a87d724
http://arxiv.org/abs/1511.07321
http://arxiv.org/abs/1511.07321
Publikováno v:
Mathematische Zeitschrift
We study fixed loci of antisymplectic involutions on projective hyperk\"ahler manifolds. When the involution is induced by an ample class of square 2 in the Beauville-Bogomolov-Fujiki lattice, we show that the number of connected components of the fi