Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Giulia Codenotti"'
Publikováno v:
Discrete and Computational Geometry, 2022, 67, 65-111
Discrete & Computational Geometry
Discrete & Computational Geometry
We explore upper bounds on the covering radius of non-hollow lattice polytopes. In particular, we conjecture a general upper bound of $d/2$ in dimension $d$, achieved by the "standard terminal simplices" and direct sums of them. We prove this conject
Publikováno v:
Discrete Applied Mathematics. 298:129-142
The second and fourth authors have conjectured that a certain hollow tetrahedron $\Delta$ of width $2+\sqrt2$ attains the maximum lattice width among all three-dimensional convex bodies. We here prove a local version of this conjecture: there is a ne
Publikováno v:
Algebraic Combinatorics. 2:343-353
A relative simplicial complex is a collection of sets of the form $\Delta \setminus \Gamma$, where $\Gamma \subset \Delta$ are simplicial complexes. Relative complexes played key roles in recent advances in algebraic, geometric, and topological combi
Publikováno v:
The electronic journal of combinatorics 27(3) (2020)
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
We study a variation of Bagchi and Datta's $\sigma$-vector of a simplicial complex $C$, whose entries are defined as weighted averages of Betti numbers of induced subcomplexes of $C$. We show that these invariants satisfy an Alexander-Dehn-Sommervill
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3577eec309f6965dc99a12997cca6caf
Autor:
Lena Walter, Giulia Codenotti
Publikováno v:
Algebraic and Geometric Combinatorics on Lattice Polytopes.
Autor:
Lorenzo Venturello, Giulia Codenotti
We investigate the question of whether any $d$-colorable simplicial $d$-polytope can be octahedralized, i.e., it can be subdivided to a $d$-dimensional geometric cross-polytopal complex. We give a positive answer in dimension $3$, with the additional
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d7559d8226a58a0893fbf9e2e75d4d9
Autor:
Francisco Santos, Giulia Codenotti
We construct a hollow lattice polytope (resp. a hollow lattice simplex) of dimension $14$ (resp.$~404$) and of width $15$ (resp.$~408$). They are the first known hollow lattice polytopes of width larger than dimension. We also construct a hollow (non
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ecd31b2c70a74d1013cf1ad99106ff7
http://arxiv.org/abs/1812.00916
http://arxiv.org/abs/1812.00916