Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Giulia Carella"'
Publikováno v:
The American Statistician. 76:64-72
The spread of COVID-19 in the U.S. prompted nonpharmaceutical interventions which caused a reduction in mobility everywhere, although with large disparities between different counties. Using a Bayesian spatial modeling framework, we investigated the
Autor:
Leonie Esters, Giulia Carella, Raffaele Bernardello, Carlos Gomez Gonzalez, Martí Galí Tàpias
Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and the ocean surface turbulence in the form of the dissipation rate of turbulent kinetic energy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::abfeb45d38b51dc3690105de8c959707
https://doi.org/10.5194/egusphere-egu21-10045
https://doi.org/10.5194/egusphere-egu21-10045
Autor:
Lluís Palma Garcia, Nube Gonzalez-Reviriego, Giulia Carella, Llorenç Lledó, Carlos Alberto Gómez-Gonzalez, Raül Marcos, Albert Soret Miravet
Seasonal climate predictions can forecast the climate variability up to several months ahead and support a wide range of societal activities. The coarse spatial resolution of seasonal forecasts needs to be refined to the regional/local scale for spec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0dc6b3f11bc0a7814ecc081ecc115d11
https://doi.org/10.5194/egusphere-egu21-12253
https://doi.org/10.5194/egusphere-egu21-12253
Autor:
C. G. Ngoungue Langue, Soulivanh Thao, Flavio Maria Emanuele Pons, Giulia Carella, Pascal Yiou, Davide Faranda, Adnane Hamid, Mathieu Vrac, Valerie Gautard
Publikováno v:
Nonlinear Processes in Geophysics
Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 2020, ⟨10.5194/npg-2020-39⟩
Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 2020, ⟨10.5194/npg-2020-39⟩
Recent advances in statistical and machine learning have opened the possibility to forecast the behavior of chaotic systems using recurrent neural networks. In this article we investigate the applicability of such a framework to geophysical flows, kn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1d55682810d81a3e3e1d7050979248bf
https://doi.org/10.5194/npg-2020-39
https://doi.org/10.5194/npg-2020-39
Autor:
Pascal Yiou, C. G. Ngoungue Langue, Adnane Hamid, Soulivanh Thao, Mathieu Vrac, Giulia Carella, Davide Faranda, Valerie Gautard, Flavio Maria Emanuele Pons
Recent advances in statistical learning have opened the possibility to forecast the behavior of chaotic systems using recurrent neural networks. In this letter we investigate the applicability of this framework to geophysical flows, known to be inter
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::221703ec06a90731b9d0bc38cad2afcd
https://doi.org/10.5194/egusphere-egu2020-7569
https://doi.org/10.5194/egusphere-egu2020-7569
Publikováno v:
SSRN Electronic Journal.
Background: The spread of COVID-19 in the US prompted non-pharmaceutical interventions which caused a sudden reduction in mobility everywhere, although with large local disparities between different counties. Methods: Using a Bayesian spatial modelli
Autor:
Alexey Kaplan, John Kennedy, Boyin Huang, David E. Parker, Shoji Hirahara, Thomas M. Smith, Masayoshi Ishii, Huai-Min Zhang, Christopher P. Atkinson, Victor Venema, Finban Lindgren, Nick Rayner, Christopher J. Merchant, David I. Berry, Elizabeth C. Kent, Simone Morak-Bozzo, Souichiro Yasui, Giulia Carella, Philip Jones, Yoshikazu Fukuda
Publikováno v:
Kent, E C, Berry, D I, Carella, G, Kennedy, J J, Parker, D E, Atkinson, C P, Rayner, N A, Smith, T M, Hirahara, S, Huang, B, Zhang, H-M, Kaplan, A, Fukuda, Y, Ishii, M, Jones, P D, Lindgren, F, Merchant, C J, Morak-Bozzo, S, Venema, V & Yasui, S 2017, ' A call for new approaches to quantifying biases in observations of sea-surface temperature ', Bulletin of the American Meteorological Society, vol. 98, no. 8, pp. 1601-1616 . https://doi.org/10.1175/BAMS-D-15-00251.1
Global surface-temperature is a fundamental measure of climate change. We discuss bias estimation for sea-surface temperature and recommend the improvements to data, observational metadata, and uncertainty modeling needed to make progress.Global surf
Autor:
Elizabeth C. Kent, Robin W. Pascal, Christopher J. Merchant, David I. Berry, Andrew K. R. Morris, Simone Morak-Bozzo, Margaret J. Yelland, Giulia Carella
Publikováno v:
Quarterly Journal of the Royal Meteorological Society. 143:2198-2209
Uncertainty in the bias adjustments applied to historical sea surface temperature (SST) measurements made using buckets are thought to make the largest contribution to uncertainty in global surface temperature trends. Measurements of the change in te
Publikováno v:
International Journal of Climatology. 37:2233-2247
The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) provides the main archive for surface marine observations for the past approximately 150 years. ICOADS ship identifier (ID) information is often missing or unusable, preventing the li