Zobrazeno 1 - 10
of 177
pro vyhledávání: '"Girela, Daniel"'
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 October 2023 526(2)
Autor:
Girela, Daniel
We give new constructions of pair of functions $(f, g)$, analytic in the unit disc, with $g\in H^\infty $ and $f$ an unbounded Bloch function, such that the product $g\cdot f$ is not a Bloch function.
Externí odkaz:
http://arxiv.org/abs/1910.12550
Autor:
Domínguez, Salvador, Girela, Daniel
Publikováno v:
Results in Mathematics 75, paper no. 67 (2020)
We prove that for every $p\ge 1$ there exists a bounded function in the analytic Besov space $B^p$ whose derivative is "badly integrable", along every radius. We apply this result to study multipliers and weighted superposition operators acting on th
Externí odkaz:
http://arxiv.org/abs/1910.10526
Autor:
Girela, Daniel, Merchán, Noel
In this paper we are concerned with two classes of conformally invariant spaces of analytic functions in the unit disc $\D$, the Besov spaces $B^p$ $(1\le p<\infty )$ and the $Q_s$ spaces $(0
Externí odkaz:
http://arxiv.org/abs/1904.01919
Autor:
Girela, Daniel, González, Cristóbal
Publikováno v:
Journal of Function Spaces, Article ID 7817353, Volume 2019 (2019), 5 pages
We use the Baernstein star-function to investigate several questions about the integral means of the convolution of two analytic functions in the unit disc. The theory of univalent functions plays a basic role in our work.
Comment: To appear in
Comment: To appear in
Externí odkaz:
http://arxiv.org/abs/1902.01595
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Domínguez, Salvador, Girela, Daniel
Publikováno v:
Monatshefte fur Mathematik 190, 4 (2019), 725-734
We use properties of the sequences of zeros of certain spaces of analytic functions in the unit disc $\mathbb D$ to study the question of characterizing the weighted superposition operators which map one of these spaces into another. We also prove th
Externí odkaz:
http://arxiv.org/abs/1812.00296
Autor:
Girela, Daniel, Merchán, Noel
Publikováno v:
Revista Matem\'atica Complutense (2018)
If $\,\mu \,$ is a finite positive Borel measure on the interval $\,[0,1)$, we let $\,\mathcal H_\mu \,$ be the Hankel matrix $\,(\mu _{n, k})_{n,k\ge 0}\,$ with entries $\,\mu _{n, k}=\mu _{n+k}$, where, for $\,n\,=\,0, 1, 2, \dots $, $\mu_n\,$ deno
Externí odkaz:
http://arxiv.org/abs/1804.02227
Autor:
Girela, Daniel, Merchán, Noel
Publikováno v:
Integral Equations and Operator Theory 89 (2017), 581-594
If $\mu $ is a positive Borel measure on the interval $[0, 1)$ we let $\mathcal H_\mu $ be the Hankel matrix $\mathcal H_\mu =(\mu _{n, k})_{n,k\ge 0}$ with entries $\mu _{n, k}=\mu _{n+k}$, where, for $n\,=\,0, 1, 2, \dots $, $\mu_n$ denotes the mom
Externí odkaz:
http://arxiv.org/abs/1706.04079
Autor:
Girela, Daniel, Merchán, Noel
Publikováno v:
Banach J. Math. Anal. 12, no. 2 (2018), 374-398
If $\mu $ is a positive Borel measure on the interval $[0, 1)$ we let $\mathcal H_\mu $ be the Hankel matrix $\mathcal H_\mu =(\mu_{n, k})_{n,k\ge 0}$ with entries $\mu_{n, k}=\mu_{n+k}$, where, for $n\,=\,0, 1, 2, \dots $, $\mu_n$ denotes the moment
Externí odkaz:
http://arxiv.org/abs/1612.08304