Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Giorgos Karafotias"'
Publikováno v:
Applications of Evolutionary Computation ISBN: 9783319165486
EvoApplications
EvoApplications
Parameter controllers for Evolutionary Algorithms (EAs) deal with adjusting parameter values during an evolutionary run. Many ad hoc approaches have been presented for parameter control, but few generic parameter controllers exist. Recently, successf
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::72227fc6d6a4bc048a1a5a3632446107
https://doi.org/10.1007/978-3-319-16549-3_54
https://doi.org/10.1007/978-3-319-16549-3_54
Publikováno v:
GECCO (Companion)
Fate Agent EAs form a novel flavour or subclass in EC. The idea is to decompose the main loop of traditional evolutionary algorithms into three independently acting forces, implemented by the so-called Fate Agents, and create an evolutionary process
Publikováno v:
GECCO
Karafotias, G, Eiben, A E & Hoogendoorn, M 2014, Generic parameter control with reinforcement learning . in 2014 conference on Genetic and evolutionary computation (GECCO '14). . ACM, pp. 1319-1326 .
2014 conference on Genetic and evolutionary computation (GECCO '14)., 1319-1326
STARTPAGE=1319;ENDPAGE=1326;TITLE=2014 conference on Genetic and evolutionary computation (GECCO '14).
Karafotias, G, Eiben, A E & Hoogendoorn, M 2014, Generic parameter control with reinforcement learning . in 2014 conference on Genetic and evolutionary computation (GECCO '14). . ACM, pp. 1319-1326 .
2014 conference on Genetic and evolutionary computation (GECCO '14)., 1319-1326
STARTPAGE=1319;ENDPAGE=1326;TITLE=2014 conference on Genetic and evolutionary computation (GECCO '14).
Parameter control in Evolutionary Computing stands for an approach to parameter setting that changes the parameters of an Evolutionary Algorithm (EA) on-the-fly during the run. In this paper we address the issue of a generic and parameter-independent
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22a646949ea5bf90cf5c3cd015130bd8
https://hdl.handle.net/1871.1/ad02f607-b7d5-4b55-8b34-ddba2dd273a5
https://hdl.handle.net/1871.1/ad02f607-b7d5-4b55-8b34-ddba2dd273a5
Publikováno v:
IEEE Symposium Series on Computational Intelligence (SSCI '14), 46-53
STARTPAGE=46;ENDPAGE=53;TITLE=IEEE Symposium Series on Computational Intelligence (SSCI '14)
FOCI
Karafotias, G & Hoogendoorn, M 2014, Comparing Generic Parameter Controllers for EAs . in IEEE Symposium Series on Computational Intelligence (SSCI '14) . IEEE, pp. 46-53 . https://doi.org/10.1109/FOCI.2014.7007806
STARTPAGE=46;ENDPAGE=53;TITLE=IEEE Symposium Series on Computational Intelligence (SSCI '14)
FOCI
Karafotias, G & Hoogendoorn, M 2014, Comparing Generic Parameter Controllers for EAs . in IEEE Symposium Series on Computational Intelligence (SSCI '14) . IEEE, pp. 46-53 . https://doi.org/10.1109/FOCI.2014.7007806
Parameter controllers for Evolutionary Algorithms (EAs) deal with adjusting parameter values during an evolutionary run. Many ad hoc approaches have been presented for parameter control, but few generic parameter controllers exist and, additionally,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::126639e45e7d0bc337f62f47fa636ac8
https://research.vu.nl/en/publications/5a5ca3d5-7020-4a3d-908a-3b382309b6da
https://research.vu.nl/en/publications/5a5ca3d5-7020-4a3d-908a-3b382309b6da
Publikováno v:
Proceedings of the 2013 IEEE Congress on Evolutionary Computation, 349-355
STARTPAGE=349;ENDPAGE=355;TITLE=Proceedings of the 2013 IEEE Congress on Evolutionary Computation
Karafotias, G, Hoogendoorn, M & Eiben, A E 2013, Why parameter control mechanisms should be benchmarked against random variation . in Proceedings of the 2013 IEEE Congress on Evolutionary Computation . pp. 349-355 .
IEEE Congress on Evolutionary Computation
STARTPAGE=349;ENDPAGE=355;TITLE=Proceedings of the 2013 IEEE Congress on Evolutionary Computation
Karafotias, G, Hoogendoorn, M & Eiben, A E 2013, Why parameter control mechanisms should be benchmarked against random variation . in Proceedings of the 2013 IEEE Congress on Evolutionary Computation . pp. 349-355 .
IEEE Congress on Evolutionary Computation
Parameter control mechanisms in evolutionary algorithms (EAs) dynamically change the values of the EA parameters during a run. Research over the last two decades has delivered ample examples where an EA using a parameter control mechanism outperforms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::33c99d316052f428481974b6c54e9565
https://hdl.handle.net/1871.1/f3b4d3ae-fd5f-4ac2-a5cb-5d984463319d
https://hdl.handle.net/1871.1/f3b4d3ae-fd5f-4ac2-a5cb-5d984463319d
Publikováno v:
Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion (GECCO-2013-Companion), 215-216
STARTPAGE=215;ENDPAGE=216;TITLE=Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion (GECCO-2013-Companion)
Karafotias, G, Hoogendoorn, M & Eiben, A E 2013, Parameter control: strategy or luck? in Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion (GECCO-2013-Companion) . pp. 215-216 .
GECCO (Companion)
STARTPAGE=215;ENDPAGE=216;TITLE=Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion (GECCO-2013-Companion)
Karafotias, G, Hoogendoorn, M & Eiben, A E 2013, Parameter control: strategy or luck? in Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion (GECCO-2013-Companion) . pp. 215-216 .
GECCO (Companion)
Parameter control mechanisms in evolutionary algorithms (EAs) dynamically change the values of the EA parameters during a run. Research over the last two decades has delivered ample examples where an EA using a parameter control mechanism outperforms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84d56bbb8f2ed68d151980800f3446e7
https://research.vu.nl/en/publications/052eb8f5-38f9-4f1b-b256-3c416a6d0f95
https://research.vu.nl/en/publications/052eb8f5-38f9-4f1b-b256-3c416a6d0f95
Publikováno v:
Applications of Evolutionary Computation ISBN: 9783642291777
EvoApplications
EvoApplications
On-line control of EA parameters is an approach to parameter setting that offers the advantage of values changing during the run. In this paper, we investigate parameter control from a generic and parameter-independent perspective. We propose a gener
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c8d24f0ce8acb97affcda90288f4ab4b
https://doi.org/10.1007/978-3-642-29178-4_37
https://doi.org/10.1007/978-3-642-29178-4_37
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783642329630
PPSN (2)
PPSN (2)
We introduce a novel evolutionary algorithm where the centralized oracle ---the selection-reproduction loop--- is replaced by a distributed system of Fate Agents that autonomously perform the evolutionary operations. This results in a distributed, si
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c0b7a5165e4b5fffab2955f040ba2c64
https://doi.org/10.1007/978-3-642-32964-7_19
https://doi.org/10.1007/978-3-642-32964-7_19
Publikováno v:
GECCO
This paper presents part of an endeavour towards robots and robot collectives that can adapt their controllers autonomously and self-sufficiently and so independently learn to cope with situations unforeseen by their designers. We introduce the Embod
Publikováno v:
Haasdijk, E W, Eiben, A E & Karafotias, G 2010
evolution of robot controllers by an encapsulated evolution strategy . in Proceedings of the 2010 IEEE Congress on Evolutionary Computation .
IEEE Congress on Evolutionary Computation
Proceedings of the 2010 IEEE Congress on Evolutionary Computation
evolution of robot controllers by an encapsulated evolution strategy . in Proceedings of the 2010 IEEE Congress on Evolutionary Computation .
IEEE Congress on Evolutionary Computation
Proceedings of the 2010 IEEE Congress on Evolutionary Computation
This paper describes and experimentally evaluates the viability of the (µ +1) ON-LINE evolutionary algorithm for on-line adaptation of robot controllers. Secondly, it explores the parameter space for this algorithm and identifies four important para
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::acc8550545d18f912304639561b3db8b
https://research.vu.nl/en/publications/c8d8856e-ca26-4b02-bc42-93b66a1105c1
https://research.vu.nl/en/publications/c8d8856e-ca26-4b02-bc42-93b66a1105c1