Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Giorgos Chasapis"'
Publikováno v:
Journal d'Analyse Mathématique. 149:529-553
Publikováno v:
Journal of Theoretical Probability. 36:1227-1242
We establish several Schur-convexity type results under fixed variance for weighted sums of independent gamma random variables and obtain nonasymptotic bounds on their R\'enyi entropies. In particular, this pertains to the recent results by Bartczak-
Publikováno v:
Bulletin of the London Mathematical Society.
Publikováno v:
The Annals of Probability. 50
Autor:
Nikos Skarmogiannis, Giorgos Chasapis
Publikováno v:
Advances in Geometry. 21:5-14
Improving a result of Hajela, we show for every function f with lim n→∞ f(n) = ∞ and f(n) = o(n) that there exists n 0 = n 0(f) such that for every n ⩾ n 0 and any S ⊆ {–1, 1} n with cardinality |S| ⩽ 2 n/f(n) one can find orthonormal v
Publikováno v:
Journal of Functional Analysis. 281:109185
We establish a sharp moment comparison inequality between an arbitrary negative moment and the second moment for sums of independent uniform random variables, which extends Ball's cube slicing inequality.
Let $C$ and $K$ be centrally symmetric convex bodies of volume $1$ in ${\mathbb R}^n$. We provide upper bounds for the multi-integral expression \begin{equation*}\|{\bf t}\|_{C^s,K}=\int_{C}\cdots\int_{C}\Big\|\sum_{j=1}^st_jx_j\Big\|_K\,dx_1\cdots d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92e0268108f41023fba78a386c5f05ca
http://arxiv.org/abs/1906.03719
http://arxiv.org/abs/1906.03719
Publikováno v:
Archiv der Mathematik. 108:209-221
We prove that there exists an absolute constant $${\alpha > 1}$$ with the following property: if K is a convex body in $${{\mathbb R}^n}$$ whose center of mass is at the origin, then a random subset $${X\subset K}$$ of cardinality $${{\rm card}(X)=\l
Let $X_1,\ldots,X_N$, $N>n$, be independent random points in $\mathbb{R}^n$, distributed according to the so-called beta or beta-prime distribution, respectively. We establish threshold phenomena for the volume, intrinsic volumes, or more general mea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::63d2185a9bc77474157c13ab77cabd39
http://hdl.handle.net/10281/395179
http://hdl.handle.net/10281/395179
Autor:
Nikos Skarmogiannis, Giorgos Chasapis
A question related to some conjectures of Lutwak about the affine quermassintegrals of a convex body $K$ in ${\mathbb R}^n$ asks whether for every convex body $K$ in ${\mathbb R}^n$ and all $1\leqslant k\leqslant n$ $$\Phi_{[k]}(K):={\rm vol}_n(K)^{-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4211de46c473f5f1752965edeafa8745