Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Gioia, Failla"'
Autor:
Gioia Failla, Paola Lea Staglianó
Publikováno v:
Mathematics, Vol 9, Iss 21, p 2659 (2021)
In this paper we study a monomial module M generated by an s-sequence and the main algebraic and homological invariants of the symmetric algebra of M. We show that the first syzygy module of a finitely generated module M, over any commutative Noether
Externí odkaz:
https://doaj.org/article/0173f614d3d6483982562c90a8262116
Autor:
Gioia Failla
Publikováno v:
Opuscula Mathematica, Vol 37, Iss 6, Pp 829-837 (2017)
We establish that the Segre product between a polynomial ring on a field \(K\) in \(m\) variables and the second squarefree Veronese subalgebra of a polynomial ring on \(K\) in \(n\) variables has the intersection degree equal to three. We describe a
Externí odkaz:
https://doaj.org/article/ab4c196b125442b090a7f9eb53b7bd19
Autor:
Gioia Failla
Publikováno v:
Mediterranean Journal of Mathematics. 19
Publikováno v:
Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali, Vol 95, Iss 1, p S1 (2017)
In this expository article we give a self-contained presentation on the rational points of finite order on smooth cubics. We mainly construct examples of points of order between four and twelve, except the eleven case of course. And, in some cases, w
Externí odkaz:
https://doaj.org/article/3938100452064d0bac422dbdfca13a0e
Publikováno v:
Journal of Algebra. 568:22-34
Let R = K [ x , y , z ] be a standard graded polynomial ring where K is an algebraically closed field of characteristic zero. Let M = ⊕ j M j be a finite length graded R-module. We say that M has the Weak Lefschetz Property if there is a homogeneou
Autor:
Gioia Failla, Carmelo Cisto, Chris Peterson, Michael DiPasquale, Zachary Flores, Rosanna Utano
Publikováno v:
Semigroup Forum. 101:303-325
A numerical semigroup is a submonoid of $${\mathbb {N}}$$ with finite complement in $${\mathbb {N}}$$ . A generalized numerical semigroup is a submonoid of $${\mathbb {N}}^{d}$$ with finite complement in $${\mathbb {N}}^{d}$$ . In the context of nume
Autor:
Gioia Failla
Publikováno v:
Le Matematiche, Vol 64, Iss 1, Pp 113-125 (2009)
For a vector space R ⊆ k^{m+1} of dimension r + 1 on the algebraically closed field k we determine, for any i ≤ r, the possible numbers of Hankel i−planes contained in the r−plane P(R), linear space in P^m .
Externí odkaz:
https://doaj.org/article/eb3cd751b9d140999c8ef1619a0d2608
Publikováno v:
Le Matematiche, Vol 63, Iss 2, Pp 191-195 (2008)
Let A=K[x1, ..... ,xn] be a standard graded polynomial ring over a field K, let M = (x_1, .... , x_n) be the graded maximal ideal and I a graded ideal of A. For each i the Betti numbers b_i(I^k ) of I^k are polynomial functions for k>>0. We show tha
Externí odkaz:
https://doaj.org/article/1acb391a33554cb4b4bbcf1a03021975
Autor:
Paola Lea Staglianò, Gioia Failla
Publikováno v:
Mathematics
Volume 9
Issue 21
Mathematics, Vol 9, Iss 2659, p 2659 (2021)
Volume 9
Issue 21
Mathematics, Vol 9, Iss 2659, p 2659 (2021)
In this paper we study a monomial module M generated by an s-sequence and the main algebraic and homological invariants of the symmetric algebra of M. We show that the first syzygy module of a finitely generated module M, over any commutative Noether
Autor:
Zhongming Tang, Gioia Failla
Publikováno v:
Communications in Algebra. 46:3135-3146
Let S=K[x1,…,xn] be a polynomial ring over a field K and I be a nonzero graded ideal of S. Then, for t≫0, the Betti number βq(S∕It) is a polynomial in t, which is denoted by 𝔅qI(t). It is proved that 𝔅qI(t) is vanished or of degree l(I)