Zobrazeno 1 - 10
of 1 316
pro vyhledávání: '"Gilson N"'
This paper develops an adaptive Proximal Alternating Direction Method of Multipliers (P-ADMM) for solving linearly-constrained, weakly convex, composite optimization problems. This method is adaptive to all problem parameters, including smoothness an
Externí odkaz:
http://arxiv.org/abs/2407.09927
A quasi-Newton method with cubic regularization is designed for solving Riemannian unconstrained nonconvex optimization problems. The proposed algorithm is fully adaptive with at most ${\cal O} (\epsilon_g^{-3/2})$ iterations to achieve a gradient sm
Externí odkaz:
http://arxiv.org/abs/2402.12464
The convergence of inexact Newton methods is studied for solving generalized equations on Riemannian manifolds by using the metric regularity property, which is also explored. Under appropriate conditions and without any additional geometric assumpti
Externí odkaz:
http://arxiv.org/abs/2303.10554
Publikováno v:
Journal of Military & Veterans' Health. Jul2024, Vol. 32 Issue 3, p22-30. 9p.
Publikováno v:
Mathematical Modelling and Analysis, Vol 29, Iss 2 (2024)
In this paper, we study the solvability of nonsmooth generalized equations in Banach spaces using a modified Newton-secant method, by assuming a Hölder condition. Also, we generalize a Dennis-Moré theorem to characterize the superlinear convergence
Externí odkaz:
https://doaj.org/article/e412ddf3f84f4b72926f337067aff739
Autor:
Silva, Gilson N.
In this paper we study Newton's method for solving the generalized equation $F(x)+T(x)\ni 0$ in Hilbert spaces, where $F$ is a Fr\'echet differentiable function and $T$ is set-valued and maximal monotone. We show that this method is local quadratical
Externí odkaz:
http://arxiv.org/abs/1603.05280
Autor:
Silva, Gilson N.
In this paper we consider a version of the Kantorovich's theorem for solving the generalized equation $F(x)+T(x)\ni 0$, where $F$ is a Fr\'echet derivative function and $T$ is a set-valued and maximal monotone acting between Hilbert spaces. We show t
Externí odkaz:
http://arxiv.org/abs/1603.04782
Publikováno v:
Mathematical Modelling & Analysis; 2024, Vol. 29 Issue 2, p347-366, 20p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Virgara R; Allied Health and Human Performance, University of South Australia, c/o GPO Box 2471, Adelaide, South Australia, 5001, Australia., Singh B; Allied Health and Human Performance, University of South Australia, c/o GPO Box 2471, Adelaide, South Australia, 5001, Australia., O'Connor E; Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, South Australia, Australia., Szeto K; Allied Health and Human Performance, University of South Australia, c/o GPO Box 2471, Adelaide, South Australia, 5001, Australia., Merkx Z; Allied Health and Human Performance, University of South Australia, c/o GPO Box 2471, Adelaide, South Australia, 5001, Australia., Rees C; Allied Health and Human Performance, University of South Australia, c/o GPO Box 2471, Adelaide, South Australia, 5001, Australia., Gilson N; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia., Maher C; Allied Health and Human Performance, University of South Australia, c/o GPO Box 2471, Adelaide, South Australia, 5001, Australia. Carol.maher@unisa.edu.au.
Publikováno v:
BMC public health [BMC Public Health] 2024 Sep 27; Vol. 24 (1), pp. 2623. Date of Electronic Publication: 2024 Sep 27.