Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Gilles Louppe"'
Autor:
Marc Joiret, Marine Leclercq, Gaspard Lambrechts, Francesca Rapino, Pierre Close, Gilles Louppe, Liesbet Geris
Publikováno v:
Frontiers in Artificial Intelligence, Vol 6 (2023)
The genetic code is textbook scientific knowledge that was soundly established without resorting to Artificial Intelligence (AI). The goal of our study was to check whether a neural network could re-discover, on its own, the mapping links between cod
Externí odkaz:
https://doaj.org/article/5953f6390c294c27883db9ffb648b52e
Autor:
Vincent Denoël, Olivier Bruyère, Gilles Louppe, Fabrice Bureau, Vincent D’orio, Sébastien Fontaine, Laurent Gillet, Michèle Guillaume, Éric Haubruge, Anne-Catherine Lange, Fabienne Michel, Romain Van Hulle, Maarten Arnst, Anne-Françoise Donneau, Claude Saegerman
Publikováno v:
Archives of Public Health, Vol 80, Iss 1, Pp 1-13 (2022)
Abstract Background The role played by large-scale repetitive SARS-CoV-2 screening programs within university populations interacting continuously with an urban environment, is unknown. Our objective was to develop a model capable of predicting the d
Externí odkaz:
https://doaj.org/article/34e6d91133034350bd7867a7cd27ae42
Publikováno v:
Journal of High Energy Physics, Vol 2019, Iss 1, Pp 1-23 (2019)
Abstract Recent progress in applying machine learning for jet physics has been built upon an analogy between calorimeters and images. In this work, we present a novel class of recursive neural networks built instead upon an analogy between QCD and na
Externí odkaz:
https://doaj.org/article/8f41ac794c36442bb679e59c8528f361
Publikováno v:
PLoS ONE, Vol 9, Iss 4, p e93379 (2014)
The primary goal of genome-wide association studies (GWAS) is to discover variants that could lead, in isolation or in combination, to a particular trait or disease. Standard approaches to GWAS, however, are usually based on univariate hypothesis tes
Externí odkaz:
https://doaj.org/article/0ed93c6638b24d1381fc9469215847dd
Autor:
Florent Purnode, Francois Henrotte, Francois Caire, Joaquim da Silva, Gilles Louppe, Christophe Geuzaine
Publikováno v:
IEEE Transactions on Magnetics. 58:1-4
Publikováno v:
Nature Reviews Physics
Nature Reviews Physics, 2022, 4 (9), pp.573-577. ⟨10.1038/s42254-022-00498-4⟩
Nature Reviews Physics, 2022, 4 (9), pp.573-577. ⟨10.1038/s42254-022-00498-4⟩
International audience
Retrieving the physical parameters from spectroscopic observations of exoplanets is key to understanding their atmospheric properties. Exoplanetary atmospheric retrievals are usually based on approximate Bayesian inference and rely on sampling-based
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68ed1e04881540e6dd1de15178efe382
Autor:
Alexis Messina, Michael Schyns, Björn-Olav Dozo, Vincent Denoël, Romain Van Hulle, Anne-Marie Etienne, Stéphanie Delroisse, Olivier Bruyère, Vincent D’Orio, Sébastien Fontaine, Michèle Guillaume, Anne-Catherine Lange, Gilles Louppe, Fabienne Michel, Anne-Sophie Nyssen, Fabrice Bureau, Eric Haubruge, Anne-Françoise Donneau, Laurent Gillet, Claude Saegerman
Publikováno v:
Transboundary and Emerging Diseases.
In mid-2020, the University of Liège (ULiège, Belgium) commissioned the ULiège Video Game Research Laboratory (Liège Game Lab) and the AR/VR Lab of the HEC-Management School of ULiège to create a serious game to raise awareness of preventive mea
Instrumental aberrations strongly limit high-contrast imaging of exoplanets, especially when they produce quasistatic speckles in the science images. With the help of recent advances in deep learning, we have developed in previous works an approach t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9acb8e80c50f9067c578611c1a85e649
http://arxiv.org/abs/2211.05242
http://arxiv.org/abs/2211.05242
Towards constraining warm dark matter with stellar streams through neural simulation-based inference
Publikováno v:
Monthly Notices of the Royal Astronomical Society, 507(2), 1999-2011. Oxford University Press
A statistical analysis of the observed perturbations in the density of stellar streams can in principle set stringent constraints on the mass function of dark matter subhaloes, which in turn can be used to constrain the mass of the dark matter partic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::032f98ac3c8c4ea3f8291f24c4627e54
https://dare.uva.nl/personal/pure/en/publications/towards-constraining-warm-dark-matter-with-stellar-streams-through-neural-simulationbased-inference(6c755118-34a5-4182-a645-a1b74686e130).html
https://dare.uva.nl/personal/pure/en/publications/towards-constraining-warm-dark-matter-with-stellar-streams-through-neural-simulationbased-inference(6c755118-34a5-4182-a645-a1b74686e130).html