Zobrazeno 1 - 10
of 308
pro vyhledávání: '"Gill Barequet"'
Publikováno v:
Annals of Combinatorics. 26:997-1020
Autor:
Gill Barequet, Gil Ben-Shachar
Publikováno v:
Algorithmica. 85:75-99
Publikováno v:
Discrete & Computational Geometry.
We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d-dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions
Autor:
Gill Barequet, Mira Shalah
Publikováno v:
Algorithmica. 84:3559-3586
A $d$-dimensional polycube is a facet-connected set of cells (cubes) on the $d$-dimensional cubical lattice $\mathbb{Z}^d$. Let $A_d(n)$ denote the number of $d$-dimensional polycubes (distinct up to translations) with $n$ cubes, and $\lambda_d$ deno
Autor:
Gill Barequet, Gil Ben-Shachar
Publikováno v:
The Electronic Journal of Combinatorics. 29
We consider minimum-perimeter lattice animals, providing a set of conditions which are sufficient for a lattice to have the property that inflating all minimum-perimeter animals of a certain size yields (without repetitions) all minimum-perimeter ani
Publikováno v:
Algorithmica. 83:2245-2272
In this paper, we study the convex-straight-skeleton Voronoi diagrams of line segments and convex polygons. We explore the combinatorial complexity of these diagrams, and provide efficient algorithms for computing compact representations of them.
Autor:
Eyal Ackerman, Michelle M. Allen, Gill Barequet, Maarten Löffler, Joshua Mermelstein, Diane L. Souvaine, Csaba D. Tóth
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 18 no. 3, Iss Combinatorics (2016)
We study the configuration space of rectangulations and convex subdivisions of $n$ points in the plane. It is shown that a sequence of $O(n\log n)$ elementary flip and rotate operations can transform any rectangulation to any other rectangulation on
Externí odkaz:
https://doaj.org/article/aea6f0690a3d496c9708c99db4b7571e
Autor:
Gill Barequet, Bar Magal
Publikováno v:
Computational Geometry. 108:101919
Publikováno v:
Trends in Mathematics ISBN: 9783030838225
We provide almost tight bounds on the minimum and maximum possible numbers of compositions of two polycubes, either when each is of size n, or when their total size is 2n, in two and higher dimensions. We also provide an efficient algorithm (with som
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c214a69763a1632dabb41e5445d18464
https://doi.org/10.1007/978-3-030-83823-2_12
https://doi.org/10.1007/978-3-030-83823-2_12
Autor:
Gill Barequet, Gil Ben-Shachar
Publikováno v:
LATIN 2020: Theoretical Informatics ISBN: 9783030617912
LATIN
LATIN
A lattice animal is a connected set of cells on a lattice. The perimeter of a lattice animal A consists of all the cells that do not belong to A, but that have a least one neighboring cell of A. We consider minimal-perimeter lattice animals, that is,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::74acd419f3656027a986520793036f45
https://doi.org/10.1007/978-3-030-61792-9_41
https://doi.org/10.1007/978-3-030-61792-9_41