Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Gilbert Levitt"'
View the abstract.
Publikováno v:
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2019, 371 (5), pp.3397-3416. ⟨10.1090/tran/7392⟩
2017-10. 19 pages. 2017
Transactions of the American Mathematical Society, 2019, 371 (5), pp.3397-3416. ⟨10.1090/tran/7392⟩
Transactions of the American Mathematical Society, American Mathematical Society, 2019, 371 (5), pp.3397-3416. ⟨10.1090/tran/7392⟩
2017-10. 19 pages. 2017
Transactions of the American Mathematical Society, 2019, 371 (5), pp.3397-3416. ⟨10.1090/tran/7392⟩
We study to what extent torsion-free (Gromov)-hyperbolic groups are elementarily equivalent to their finite index subgroups. In particular, we prove that a hyperbolic limit group either is a free product of cyclic groups and surface groups, or admits
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::184e03a645c04347469ac39501a1c958
https://hal.archives-ouvertes.fr/hal-01454986
https://hal.archives-ouvertes.fr/hal-01454986
Autor:
Gilbert Levitt
Publikováno v:
Annales de l’institut Fourier. 65:725-762
A generalized Baumslag-Solitar (GBS) group is a finitely generated group acting on a tree with infinite cyclic edge and vertex stabilizers. We show how to determine effectively the rank (minimal cardinality of a generating set) of a GBS group; as a c
Autor:
Gilbert Levitt
Publikováno v:
Journal of Group Theory
Journal of Group Theory, De Gruyter, 2015, 18 (1), pp.1-43. ⟨10.1515/jgth-2014-0028⟩
Journal of Group Theory, De Gruyter, 2015, 18 (1), pp.1-43. ⟨10.1515/jgth-2014-0028⟩
We determine all generalized Baumslag–Solitar groups (finitely generated groups acting on a tree with all stabilizers infinite cyclic) which are quotients of a given Baumslag–Solitar group BS(m,n), and (when BS(m,n) is not Hopfian) which of them
Autor:
Gilbert Levitt, Vincent Guirardel
Publikováno v:
Israël Journal of Mathematics
Israël Journal of Mathematics, The Hebrew University Magnes Press, 2016, 212 (2), pp.729-755. 〈10.1007/s11856-016-1304-x〉
Israël Journal of Mathematics, Hebrew University Magnes Press, 2016, 212 (2), pp.729-755. ⟨10.1007/s11856-016-1304-x⟩
Israel Journal of Mathematics
Israel Journal of Mathematics, 2016, 212 (2), pp.729-755. ⟨10.1007/s11856-016-1304-x⟩
Israël Journal of Mathematics, The Hebrew University Magnes Press, 2016, 212 (2), pp.729-755. 〈10.1007/s11856-016-1304-x〉
Israël Journal of Mathematics, Hebrew University Magnes Press, 2016, 212 (2), pp.729-755. ⟨10.1007/s11856-016-1304-x⟩
Israel Journal of Mathematics
Israel Journal of Mathematics, 2016, 212 (2), pp.729-755. ⟨10.1007/s11856-016-1304-x⟩
Consider a group G and a family $\mathcal{A}$ of subgroups of G. We say that vertex finiteness holds for splittings of G over $\mathcal{A}$ if, up to isomorphism, there are only finitely many possibilities for vertex stabilizers of minimal G-trees wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e8cf1f09fd161dd473b94ea931c7be38
https://hal.archives-ouvertes.fr/hal-00905770
https://hal.archives-ouvertes.fr/hal-00905770
Autor:
Vincent Guirardel, Gilbert Levitt
Publikováno v:
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2015, 15 (6), pp.3485-3534. 〈10.2140/agt.2015.15.3485〉
Algebr. Geom. Topol. 15, no. 6 (2015), 3485-3534
Algebraic and Geometric Topology, 2016, 15 (6), pp.3485-3534. ⟨10.2140/agt.2015.15.3485⟩
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2016, 15 (6), pp.3485-3534. ⟨10.2140/agt.2015.15.3485⟩
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2015, 15 (6), pp.3485-3534. 〈10.2140/agt.2015.15.3485〉
Algebr. Geom. Topol. 15, no. 6 (2015), 3485-3534
Algebraic and Geometric Topology, 2016, 15 (6), pp.3485-3534. ⟨10.2140/agt.2015.15.3485⟩
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2016, 15 (6), pp.3485-3534. ⟨10.2140/agt.2015.15.3485⟩
The outer automorphism group [math] of a group [math] acts on the set of conjugacy classes of elements of [math] . McCool proved that the stabilizer [math] of a finite set of conjugacy classes is finitely presented when [math] is free. More generally
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9878e0e8d306d48b929811a298de0c8e
https://hal.archives-ouvertes.fr/hal-01059073
https://hal.archives-ouvertes.fr/hal-01059073
Autor:
Vincent Guirardel, Gilbert Levitt
Publikováno v:
Groups, Geometry, and Dynamics
Groups, Geometry, and Dynamics, 2015, 9 (2), pp.599-663. ⟨10.4171/GGD/322⟩
Groups Geometry and Dynamics
Groups Geometry and Dynamics, European Mathematical Society, 2015, 9 (2), pp.599-663. 〈10.4171/GGD/322〉
Groups, Geometry, and Dynamics, European Mathematical Society, 2015, 9 (2), pp.599-663. ⟨10.4171/GGD/322⟩
Groups, Geometry, and Dynamics, 2015, 9 (2), pp.599-663. ⟨10.4171/GGD/322⟩
Groups Geometry and Dynamics
Groups Geometry and Dynamics, European Mathematical Society, 2015, 9 (2), pp.599-663. 〈10.4171/GGD/322〉
Groups, Geometry, and Dynamics, European Mathematical Society, 2015, 9 (2), pp.599-663. ⟨10.4171/GGD/322⟩
We study automorphisms of a relatively hyperbolic group G. When G is one-ended, we describe Out(G) using a preferred JSJ tree over subgroups that are virtually cyclic or parabolic. In particular, when G is toral relatively hyperbolic, Out(G) is virtu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::77619267a07ade00a9ded44ff15d6641
https://hal.science/hal-00762074v3/document
https://hal.science/hal-00762074v3/document
Autor:
Karen Vogtmann, Gilbert Levitt
Publikováno v:
Topology. 39:1239-1251
For G the fundamental group of a closed surface, we produce an algorithm which decides whether there is an element of the automorphism group of G which takes one specified finite set of elements to another. The algorithm finds such an automorphism if
Autor:
Martin Lustig, Gilbert Levitt
Publikováno v:
Commentarii Mathematici Helvetici. 75:415-429
Let F n be the free group of rank n, and \( \partial F_n \) its boundary (or space of ends).¶For any \( \alpha \in \) Aut F n , the homeomorphism \( \partial \alpha \) induced by \( \alpha \) on \( \partial F_n \) has at least two periodic points of
Autor:
Martin Lustig, Gilbert Levitt
Publikováno v:
Annales Scientifiques de l'Ãcole Normale Supérieure. 33:507-517
Let G be a non-elementary hyperbolic group (e.g. a non-abelian free group of finite rank). We show that, for “most” automorphisms α of G (in a precise sense), there exist distinct elements X+,X− in the Gromov boundary ∂G of G such that lim n