Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Gil Schieber"'
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 099 (2010)
After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of
Externí odkaz:
https://doaj.org/article/9e06797c36a2408793118f0812bb9dbf
Autor:
Robert Coquereaux, Gil Schieber
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 5, p 044 (2009)
Three exceptional modular invariants of SU(4) exist at levels 4, 6 and 8. They can be obtained from appropriate conformal embeddings and the corresponding graphs have self-fusion. From these embeddings, or from their associated modular invariants, we
Externí odkaz:
https://doaj.org/article/d9a9ca7e73194604967ce281e76804d5
Publikováno v:
Journal of Geometry and Physics. 57:269-292
For the SU ( 3 ) system of graphs generalizing the ADE Dynkin digrams in the classification of modular invariant partition functions in CFT, we present a general collection of algebraic objects and relations that describe fusion properties and quantu
Publikováno v:
Journal of Physics A: Mathematical and General. 38:8259-8286
The affine $su(3)$ modular invariant partition functions in 2d RCFT are associated with a set of generalized Coxeter graphs. These partition functions fall into two classes, the block-diagonal (Type I) and the non block-diagonal (Type II) cases, asso
Publikováno v:
Symmetry, Integrability and Geometry : Methods and Applications
Symmetry, Integrability and Geometry : Methods and Applications, 2010, 6, pp.099. ⟨10.3842/SIGMA.2010.099⟩
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2010, 6, pp.099. ⟨10.3842/SIGMA.2010.099⟩
Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 099 (2010)
Symmetry, Integrability and Geometry : Methods and Applications, 2010, 6, pp.099. ⟨10.3842/SIGMA.2010.099⟩
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2010, 6, pp.099. ⟨10.3842/SIGMA.2010.099⟩
Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 099 (2010)
After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ca85f9b0a928a0390afb13f8e6a8f5d5
https://hal.science/hal-00510825
https://hal.science/hal-00510825
Autor:
Robert Coquereaux, Gil Schieber
Publikováno v:
Symmetry, Integrability and Geometry : Methods and Applications
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2009, 5 (044), http://www.emis.de/journals/SIGMA/2009/044/. ⟨10.3842/SIGMA.2009.044⟩
Symmetry, Integrability and Geometry : Methods and Applications, 2009, 5 (044), http://www.emis.de/journals/SIGMA/2009/044/. ⟨10.3842/SIGMA.2009.044⟩
Symmetry, Integrability and Geometry: Methods and Applications, Vol 5, p 044 (2009)
Recercat. Dipósit de la Recerca de Catalunya
instname
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2009, 5 (044), http://www.emis.de/journals/SIGMA/2009/044/. ⟨10.3842/SIGMA.2009.044⟩
Symmetry, Integrability and Geometry : Methods and Applications, 2009, 5 (044), http://www.emis.de/journals/SIGMA/2009/044/. ⟨10.3842/SIGMA.2009.044⟩
Symmetry, Integrability and Geometry: Methods and Applications, Vol 5, p 044 (2009)
Recercat. Dipósit de la Recerca de Catalunya
instname
Three exceptional modular invariants of SU(4) exist at levels 4, 6 and 8. They can be obtained from appropriate conformal embeddings and the corresponding graphs have self-fusion. From these embeddings, or from their associated modular invariants, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::70e21f2fbdd3b120919f0fb7ae56426d
https://hdl.handle.net/2072/13074
https://hdl.handle.net/2072/13074
Autor:
Gil Schieber, Esteban Isasi
Publikováno v:
Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2007, p. 6513-6537, http://stacks.iop.org/1751-8121/40/6513
Journal of Physics A: Mathematical and Theoretical, 2007, 40, p. 6513-6537, http://stacks.iop.org/1751-8121/40/6513
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2007, p. 6513-6537, http://stacks.iop.org/1751-8121/40/6513
Journal of Physics A: Mathematical and Theoretical, 2007, 40, p. 6513-6537, http://stacks.iop.org/1751-8121/40/6513
We start with a given modular invariant M of a two dimensional su(n)_k conformal field theory (CFT) and present a general method for solving the Ocneanu modular splitting equation and then determine, in a step-by-step explicit construction, 1) the ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ef00a05672d47539ac2c3740ddef148
https://hal.archives-ouvertes.fr/hal-00098045v2/document
https://hal.archives-ouvertes.fr/hal-00098045v2/document
Autor:
Robert Coquereaux, Gil Schieber
Publikováno v:
Journal of Physics: Conference Series
Journal of Physics: Conference Series, 2008, 103, pp.012006
Journal of Physics: Conference Series, IOP Publishing, 2008, 103, pp.012006
Journal of Physics: Conference Series, 2008, 103, pp.012006
Journal of Physics: Conference Series, IOP Publishing, 2008, 103, pp.012006
We briefly discuss several algebraic tools that are used to describe the quantum symmetries of Boundary Conformal Field Theories on a torus. The starting point is a fusion category, together with an action on another category described by a quantum g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::505db8882937e38cff7eada977c81e32
Autor:
Robert Coquereaux, Gil Schieber
Publikováno v:
Journal of Mathematical Physics
Journal of Mathematical Physics, 2007, 48 (4), pp.043511
Journal of Mathematical Physics, American Institute of Physics (AIP), 2007, 48 (4), pp.043511
Journal of Mathematical Physics, 2007, 48 (4), pp.043511
Journal of Mathematical Physics, American Institute of Physics (AIP), 2007, 48 (4), pp.043511
After giving a short description, in terms of action of categories, of some of the structures associated with sl(2) and sl(3) boundary conformal field theories on a torus, we provide tables of dimensions describing the semisimple and co-semisimple bl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ae5eaa8779eb677616b6375f88041a8
http://arxiv.org/abs/math-ph/0610073
http://arxiv.org/abs/math-ph/0610073
Autor:
Robert Coquereaux, Gil Schieber
For every ADE Dynkin diagram, we give a realization, in terms of usual fusion algebras (graph algebras), of the algebra of quantum symmetries described by the associated Ocneanu graph. We give explicitly, in each case, the list of the corresponding t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6477d0733a49804055d38a2f7b42a2c