Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Gido M. van de Ven"'
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
One challenge that faces artificial intelligence is the inability of deep neural networks to continuously learn new information without catastrophically forgetting what has been learnt before. To solve this problem, here the authors propose a replay-
Externí odkaz:
https://doaj.org/article/8cfc2c14df744076b19bf66597cf0559
Autor:
Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Douglas Blackiston, Josh Bongard, Andrew P. Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff Clune, Anurag Daram, Stefano Fusi, Peter Helfer, Leslie Kay, Nicholas Ketz, Zsolt Kira, Soheil Kolouri, Jeffrey L. Krichmar, Sam Kriegman, Michael Levin, Sandeep Madireddy, Santosh Manicka, Ali Marjaninejad, Bruce McNaughton, Risto Miikkulainen, Zaneta Navratilova, Tej Pandit, Alice Parker, Praveen K. Pilly, Sebastian Risi, Terrence J. Sejnowski, Andrea Soltoggio, Nicholas Soures, Andreas S. Tolias, Darío Urbina-Meléndez, Francisco J. Valero-Cuevas, Gido M. van de Ven, Joshua T. Vogelstein, Felix Wang, Ron Weiss, Angel Yanguas-Gil, Xinyun Zou, Hava Siegelmann
Publikováno v:
Nature Machine Intelligence. 4:196-210
ispartof: NATURE MACHINE INTELLIGENCE vol:4 issue:3 pages:196-210 status: published
Funder: International Brain Research Organization (IBRO); doi: https://doi.org/10.13039/501100001675
Incrementally learning new information from a non-stationary stream of data, referred to as 'continual learning', is a key feature of natural in
Incrementally learning new information from a non-stationary stream of data, referred to as 'continual learning', is a key feature of natural in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::390a816a47f2e7c1d547deb465772975
Autor:
Simone Scardapane, Martin Mundt, Tyler L. Hayes, Simone Calderara, Keiland W. Cooper, Christopher Kanan, Eden Belouadah, Lorenzo Pellegrini, Adrian Popescu, Matthias De Lange, Fabio Cuzzolin, Jeremy Forest, Jary Pomponi, Subutai Ahmad, Qi She, Luca Antiga, Gido M. van de Ven, Davide Maltoni, Davide Bacciu, Vincenzo Lomonaco, Joost van de Weijer, Marc Masana, Antonio Carta, Gabriele Graffieti, Andreas S. Tolias, German Ignacio Parisi, Andrea Cossu, Tinne Tuytelaars
Publikováno v:
CVPR Workshops
Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d293de3db110ff7791c5e28c4027ea01
http://hdl.handle.net/11573/1612489
http://hdl.handle.net/11573/1612489
Publikováno v:
CVPR Workshops
Incrementally training deep neural networks to recognize new classes is a challenging problem. Most existing class-incremental learning methods store data or use generative replay, both of which have drawbacks, while 'rehearsal-free' alternatives suc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::517eae0a9a25d89a182a7d51772f6cd9
Autor:
Vítor, Lopes-Dos-Santos, Gido M, van de Ven, Alexander, Morley, Stéphanie, Trouche, Natalia, Campo-Urriza, David, Dupret
Publikováno v:
Neuron. 100(4)
Theta oscillations reflect rhythmic inputs that continuously converge to the hippocampus during exploratory and memory-guided behavior. The theta-nested operations that organize hippocampal spiking could either occur regularly from one cycle to the n
Autor:
S. Lucas Black, Pavel V Perestenko, Leon G. Reijmers, Natalia Campo-Urriza, Gido M. van de Ven, Colin G. McNamara, Claire T Bratley, Stéphanie Trouche, David Dupret
Publikováno v:
Nature neuroscience
The hippocampus provides the brain's memory system with a subset of neurons holding a map-like representation of each environment experienced. We found in mice that optogenetic silencing those neurons active in an environment unmasked a subset of qui