Zobrazeno 1 - 10
of 152
pro vyhledávání: '"Gianni Dal Maso"'
Autor:
Andrea Braides, Gianni Dal Maso
Publikováno v:
Calculus of Variations and Partial Differential Equations. 62
We prove a compactness result with respect to $\Gamma$-convergence for a class of integral functionals which are expressed as a sum of a local and a non-local term. The main feature is that, under our hypotheses, the local part of the $\Gamma$-limit
Autor:
Rodica Toader, Gianni Dal Maso
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 29
We introduce a new space of generalised functions with bounded variation to prove the existence of a solution to a minimum problem that arises in the variational approach to fracture mechanics in elastoplastic materials. We study the fine properties
Autor:
Andrea Braides, Gianni Dal Maso
We study some non-local functionals on the Sobolev space $W^{1,p}_0(\Omega)$ involving a double integral on $\Omega\times\Omega$ with respect to a measure $\mu$. We introduce a suitable notion of convergence of measures on product spaces which implie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::986bb2edbc517c162a912d530250baf0
http://arxiv.org/abs/2204.01552
http://arxiv.org/abs/2204.01552
Autor:
Rodica Toader, Gianni Dal Maso
We study a variational model for crack growth in elasto-plastic materials with hardening in the antiplane case. The main result is the existence of a solution to the initial value problem with prescribed time-dependent boundary conditions.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::88ede57a9697805abdcb2a4bcfd7663b
https://hdl.handle.net/11390/1240045
https://hdl.handle.net/11390/1240045
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 127:160-191
We consider a model of elastodynamics with fracture evolution, based on energy-dissipation balance and a maximal dissipation condition. We prove an existence result in the case of planar elasticity with a free crack path, where the maximal dissipatio
Autor:
Francesco Sapio, Gianni Dal Maso
We study the behaviour of the solutions to a dynamic evolution problem for a viscoelastic model with long memory, when the rate of change of the data tends to zero. We prove that a suitably rescaled version of the solutions converges to the solution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bbc8fbdf47d3a43764ac19fe017cd67b
http://arxiv.org/abs/2106.03543
http://arxiv.org/abs/2106.03543
In this paper we study the deterministic and stochastic homogenisation of free-discontinuity functionals under linear growth and coercivity conditions. The main novelty of our deterministic result is that we work under very general assumptions on the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::96371de2979b93945384fce567396382
http://arxiv.org/abs/2101.04174
http://arxiv.org/abs/2101.04174
We prove an existence result for a model of dynamic fracture based on Griffith’s criterion in the case of a prescribed crack path with a kink.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b5f4e1dbee824cf239381fc6fd069e8
http://hdl.handle.net/20.500.11767/109750
http://hdl.handle.net/20.500.11767/109750
Autor:
Lucia De Luca, Gianni Dal Maso
Publikováno v:
Advances in calculus of variations
13 (2020): 425–436. doi:10.1515/acv-2018-0027
info:cnr-pdr/source/autori:Dal Maso G.; De Luca L./titolo:A minimization approach to the wave equation on time-dependent domains/doi:10.1515%2Facv-2018-0027/rivista:Advances in calculus of variations (Print)/anno:2020/pagina_da:425/pagina_a:436/intervallo_pagine:425–436/volume:13
13 (2020): 425–436. doi:10.1515/acv-2018-0027
info:cnr-pdr/source/autori:Dal Maso G.; De Luca L./titolo:A minimization approach to the wave equation on time-dependent domains/doi:10.1515%2Facv-2018-0027/rivista:Advances in calculus of variations (Print)/anno:2020/pagina_da:425/pagina_a:436/intervallo_pagine:425–436/volume:13
We prove the existence of weak solutions to the homogeneous wave equation on a suitable class of time-dependent domains. Using the approach suggested by De Giorgi and developed by Serra and Tilli, such solutions are approximated by minimizers of suit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5fbf8c6a626cf748cd0bf06b0462f0ac
https://hdl.handle.net/11568/934903
https://hdl.handle.net/11568/934903