Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Gian Maria Dall'Ara"'
Autor:
Gian Maria Dall’Ara, Samuele Mongodi
Publikováno v:
Journal de l’École polytechnique — Mathématiques. 10:1047-1095
Autor:
Gian Maria Dall’Ara, Duong Ngoc Son
Publikováno v:
Proceedings of the American Mathematical Society. 151:123-133
A real hypersurface in $\mathbb{C}^2$ is said to be Reinhardt if it is invariant under the standard $\mathbb{T}^2$-action on $\mathbb{C}^2$. Its CR geometry can be described in terms of the curvature function of its ``generating curve'', i.e., the lo
We show that Worm domains are not Gromov hyperbolic with respect to the Kobayashi distance.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22c2c6dbe877e3894009fc4b307e52f2
http://arxiv.org/abs/2208.02062
http://arxiv.org/abs/2208.02062
Autor:
Gian Maria Dall’Ara, Alessio Martini
Publikováno v:
Journal of Fourier Analysis and Applications. 28
Autor:
Alessio Martini, Gian Maria Dall'Ara
In a previous work we proved a spectral multiplier theorem of Mihlin--H\"ormander type for two-dimensional Grushin operators $-\partial_x^2 - V(x) \partial_y^2$, where $V$ is a doubling single-well potential, yielding the surprising result that the o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ac13fbbc697be7e4b02bd31ae1f940c8
http://arxiv.org/abs/2110.05079
http://arxiv.org/abs/2110.05079
Autor:
Gian Maria Dall'Ara
Publikováno v:
Journal of Functional Analysis. 283:109550
Autor:
Gian Maria Dall’Ara, Alessio Martini
Let $\mathcal{L} = -\partial_x^2 - V(x) \partial_y^2$ be the Grushin operator on $\mathbb{R}^2$ with coefficient $V : \mathbb{R} \to [0,\infty)$. Under the sole assumptions that $V(-x) \simeq V(x) \simeq xV'(x)$ and $x^2 |V''(x)| \lesssim V(x)$, we p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba66262f44124136167381f9d2d13916
Autor:
Gian Maria Dall'Ara
Publikováno v:
Journal of Mathematical Analysis and Applications. 457:233-247
We prove that a smooth bounded pseudoconvex domain Ω ⊆ C 3 with a one-dimensional complex manifold M in its boundary has a noncompact ∂ ‾ -Neumann operator on ( 0 , 1 ) -forms, under the additional assumption that bΩ has finite regular D'Ange
Autor:
Gian Maria Dall'Ara, Alessio Martini
We prove a multiplier theorem of Mihlin-H\"ormander type for operators of the form $-\Delta_x - V(x) \Delta_y$ on $\mathbb{R}^{d_1}_x \times \mathbb{R}^{d_2}_y$, where $V(x) = \sum_{j=1}^{d_1} V_j(x_j)$, the $V_j$ are perturbations of the power law $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6e4cee40fdb3a62894122ef1e51cb4b
http://hdl.handle.net/11583/2949476
http://hdl.handle.net/11583/2949476