Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Gia, Quoc T. Le"'
Autor:
Alodat, Tareq, Gia, Quoc T. Le
This paper examines the temporal evolution of a two-stage stochastic model for spherical random fields. The model uses a time-fractional stochastic hyperbolic diffusion equation, which describes the evolution of spherical random fields on $\bS^2$ in
Externí odkaz:
http://arxiv.org/abs/2412.05817
Vector spherical harmonics on the unit sphere of $\mathbb{R}^3$ have broad applications in geophysics, quantum mechanics and astrophysics. In the representation of a tangent vector field, one needs to evaluate the expansion and the Fourier coefficien
Externí odkaz:
http://arxiv.org/abs/1908.00041
This paper discusses sparse isotropic regularization for a random field on the unit sphere $\mathbb{S}^2$ in $\mathbb{R}^{3}$, where the field is expanded in terms of a spherical harmonic basis. A key feature is that the norm used in the regularizati
Externí odkaz:
http://arxiv.org/abs/1801.03212
Autor:
Kazashi, Yoshihito, Gia, Quoc T. Le
We investigate a discretization of a class of stochastic heat equations on the unit sphere with multiplicative noises. A spectral method is used for the spatial discretization and the truncation of the Wiener process, while an implicit Euler scheme w
Externí odkaz:
http://arxiv.org/abs/1706.02838
We propose and analyze deterministic multilevel approximations for Bayesian inversion of operator equations with uncertain distributed parameters, subject to additive Gaussian measurement data. The algorithms use a multilevel (ML) approach based on d
Externí odkaz:
http://arxiv.org/abs/1611.08324
We analyze combined Quasi-Monte Carlo quadrature and Finite Element approximations in Bayesian estimation of solutions to countably-parametric operator equations with holomorphic dependence on the parameters as considered in [Cl.~Schillings and Ch.~S
Externí odkaz:
http://arxiv.org/abs/1602.07363
In this paper we establish a multiscale approximation for random fields on the sphere using spherical needlets --- a class of spherical wavelets. We prove that the semidiscrete needlet decomposition converges in mean and pointwise senses for weakly i
Externí odkaz:
http://arxiv.org/abs/1512.07790
Spherical needlets are highly localized radial polynomials on the sphere $\mathbb{S}^{d}\subset \mathbb{R}^{d+1}$, $d\ge 2$, with centers at the nodes of a suitable cubature rule. The original semidiscrete spherical needlet approximation of Narcowich
Externí odkaz:
http://arxiv.org/abs/1502.05806
Publikováno v:
SIAM J. Sci. Comput. 37 (2015), no. 3, A1436--A1450
Quasi-Monte Carlo (QMC) rules $1/N \sum_{n=0}^{N-1} f(\boldsymbol{y}_n A)$ can be used to approximate integrals of the form $\int_{[0,1]^s} f(\boldsymbol{y} A) \,\mathrm{d} \boldsymbol{y}$, where $A$ is a matrix and $\boldsymbol{y}$ is row vector. Th
Externí odkaz:
http://arxiv.org/abs/1501.06286
We analyze the convergence of higher order Quasi-Monte Carlo (QMC) quadratures of solution-functionals to countably-parametric, nonlinear operator equations with distributed uncertain parameters taking values in a separable Banach space $X$ admitting
Externí odkaz:
http://arxiv.org/abs/1409.2180