Zobrazeno 1 - 10
of 217
pro vyhledávání: '"Ghoussoub, N."'
Autor:
Ghoussoub, N., Robert, F.
We address the question of attainability of the best constant in the following Hardy-Sobolev inequality on a smooth domain $\Omega$ of \mathbb{R}^n: $$ \mu_s (\Omega) := \inf \{\int_{\Omega}| \nabla u|^2 dx; u \in {H_{1,0}^2(\Omega)} \hbox{and} \int_
Externí odkaz:
http://arxiv.org/abs/math/0503025
The article builds on several recent advances in the Monge-Kantorovich theory of mass transport which have -- among other things -- led to new and quite natural proofs for a wide range of geometric inequalities such as the ones formulated by Brunn-Mi
Externí odkaz:
http://arxiv.org/abs/math/0310234
Autor:
Ghoussoub, N., Yuan, C.
Publikováno v:
Transactions of the American Mathematical Society, 2000 Dec 01. 352(12), 5703-5743.
Externí odkaz:
https://www.jstor.org/stable/221908
Publikováno v:
Transactions of the American Mathematical Society, 1990 Feb 01. 317(2), 541-584.
Externí odkaz:
https://www.jstor.org/stable/2001476
Autor:
Ghoussoub, N., Steele, J. Michael
Publikováno v:
The Annals of Probability, 1980 Feb 01. 8(1), 83-95.
Externí odkaz:
https://www.jstor.org/stable/2243061
Autor:
Ghoussoub, N.
Publikováno v:
Proceedings of the American Mathematical Society, 1993 Feb 01. 117(2), 439-447.
Externí odkaz:
https://www.jstor.org/stable/2159181
Publikováno v:
Proceedings of the American Mathematical Society, 1987 Feb 01. 99(2), 278-282.
Externí odkaz:
https://www.jstor.org/stable/2046625