Zobrazeno 1 - 10
of 261
pro vyhledávání: '"Ghosh, Kunal"'
Active learning (AL) has shown promise for being a particularly data-efficient machine learning approach. Yet, its performance depends on the application and it is not clear when AL practitioners can expect computational savings. Here, we carry out a
Externí odkaz:
http://arxiv.org/abs/2408.11191
Buy It Again (BIA) recommendations are crucial to retailers to help improve user experience and site engagement by suggesting items that customers are likely to buy again based on their own repeat purchasing patterns. Most existing BIA studies analyz
Externí odkaz:
http://arxiv.org/abs/2308.01195
Autor:
Sahu, Veerendra, Tripathi, Sachchida Nand, Sutaria, Ronak, Dumka, Neha, Kotwal, Atul, Ghosh, Kunal, Singh, Ritesh Kumar
Publikováno v:
In Energy for Sustainable Development August 2024 81
Publikováno v:
In International Journal of Refractory Metals and Hard Materials April 2024 120
Autor:
Sadullah, Md, Ghosh, Kunal
Publikováno v:
In Optik April 2024 300
Autor:
Das, Tishta, Kumar, B. Ravi, Sahoo, Biraj K., Roy, Himadri, Lohar, Aditya K., Samanta, Sudip K., Ghosh, Kunal
Publikováno v:
In Materials Today Communications March 2024 38
Publikováno v:
In IIMB Management Review September 2023 35(3):267-285
Autor:
Stuke, Annika, Todorović, Milica, Rupp, Matthias, Kunkel, Christian, Ghosh, Kunal, Himanen, Lauri, Rinke, Patrick
Instant machine learning predictions of molecular properties are desirable for materials design, but the predictive power of the methodology is mainly tested on well-known benchmark datasets. Here, we investigate the performance of machine learning w
Externí odkaz:
http://arxiv.org/abs/1812.08576
Publikováno v:
In Ceramics International 1 October 2022 48(19) Part A:28013-28022
Publikováno v:
International Journal of Operations & Production Management, 2022, Vol. 42, Issue 6, pp. 797-825.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/IJOPM-11-2021-0681