Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Ghit, Bogdan"'
Powerful abstractions such as dataframes are only as efficient as their underlying runtime system. The de-facto distributed data processing framework, Apache Spark, is poorly suited for the modern cloud-based data-science workloads due to its outdate
Externí odkaz:
http://arxiv.org/abs/2112.06280
Publikováno v:
Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Powerful abstractions such as dataframes are only as efficient as their underlying runtime system. The de-facto distributed data processing framework, Apache Spark, is poorly suited for the modern cloud-based data-science workloads due to its outdate
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f5dd42d8b04bc9375077eba47d189110
https://doi.org/10.1109/ipdps53621.2022.00019
https://doi.org/10.1109/ipdps53621.2022.00019
Autor:
Ghit, Bogdan, Epema, Dick
The abstract is available here: https://uscholar.univie.ac.at/o:300624
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1726::8f3b9d9284993a29e8a341c9c376814d
https://hdl.handle.net/11353/10.300624
https://hdl.handle.net/11353/10.300624
Autor:
Ghit, Bogdan, Epema, Dick
Publikováno v:
2016 16th IEEE/ACM International Symposium on Cluster, Cloud & Grid Computing (CCGrid); 2016, p11-20, 10p
Autor:
Ghit, Bogdan, Epema, Dick
Publikováno v:
2015 IEEE 23rd International Symposium on Modeling, Analysis & Simulation of Computer & Telecommunication Systems; 2015, p61-70, 10p
Publikováno v:
2015 15th IEEE/ACM International Symposium on Cluster, Cloud & Grid Computing; 2015, p606-616, 11p
Publikováno v:
2014 ACM International Conference Measurement & Modeling of Computer Systems; 6/16/2014, p329-341, 13p
Publikováno v:
2014 14th IEEE/ACM International Symposium on Cluster, Cloud & Grid Computing; 2014, p927-932, 6p
Publikováno v:
2014 IEEE International Conference on Cluster Computing (CLUSTER); 2014, p57-65, 9p
Publikováno v:
2013 IEEE International Conference on Big Data; 2013, p622-630, 9p