Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Gheysens, Maxime"'
We introduce the notion of echeloned spaces - an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or
Externí odkaz:
http://arxiv.org/abs/2312.11141
Autor:
Gheysens, Maxime, Monod, Nicolas
We investigate the group $G \vee H$ obtained by gluing together two groups $G$ and $H$ at the neutral element. This construction curiously shares some properties with the free product but others with the direct product. Our results address among othe
Externí odkaz:
http://arxiv.org/abs/2201.03625
Autor:
Gheysens, Maxime
We study the topological structure and the topological dynamics of groups of homeomorphisms of scattered spaces. For a large class of them (including the homeomorphism group of any ordinal space or of any locally compact scattered space), we establis
Externí odkaz:
http://arxiv.org/abs/2011.15009
Autor:
Gheysens, Maxime
We show that the topology of uniform convergence on bounded sets is compatible with the group law of the automorphism group of a large class of spaces that are endowed with both a uniform structure and a bornology, thus yielding numerous examples of
Externí odkaz:
http://arxiv.org/abs/2001.00548
Autor:
Gheysens, Maxime
We show that the topology of pointwise convergence on scattered spaces is compatible with the group structure of their homeomorphism group. We then establish a few topological properties of the homeomorphism group of the first uncountable ordinal, su
Externí odkaz:
http://arxiv.org/abs/1911.09088
This exposition article arose from two talks given during the Oberwolfach Arbeitsgemeinschaft on Totally Disconnected Groups in October 2014. This is an introduction to the structure theory of totally disconnected locally compact groups initiated by
Externí odkaz:
http://arxiv.org/abs/1511.09238
Autor:
Gheysens, Maxime, Monod, Nicolas
Consider the following property of a topological group G: every continuous affine G-action on a Hilbert space with a bounded orbit has a fixed point. We prove that this property characterizes amenability for locally compact sigma-compact groups (e.g.
Externí odkaz:
http://arxiv.org/abs/1508.00423
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.