Zobrazeno 1 - 10
of 433
pro vyhledávání: '"Ghergu A"'
Publikováno v:
Modern Medicine, Vol 26, Iss 1, Pp 31-33 (2019)
Over the past 70 years, the incidence of syphilis has dramatically decreased and consequently the neurosyphilis one. Therefore, when a patient is presented with neuropsychiatric symptoms such as psychosis, mania, memory loss, neurocognitive troubles,
Externí odkaz:
https://doaj.org/article/9ee324032ada4f278177d1fc64f66c78
Autor:
Ghergu, Marius, McNicholl, Jack
We discuss the existence and nonexistence of solutions to the steady-state Gierer-Meinhardt system $$ \begin{cases} \displaystyle -\Delta u=\frac{u^p}{v^q}+\lambda \rho(x) \,, u>0 &\quad\mbox{ in }\mathbb{R}^N\setminus K,\\[0.1in] \displaystyle -\Del
Externí odkaz:
http://arxiv.org/abs/2403.13603
We consider the Lane-Emden system-$\Delta$u = |v| p-1 v,-$\Delta$v = |u| q-1 u in R d. When p $\ge$ q $\ge$ 1, it is known that there exists a positive radial stable solution (u, v) $\in$ C 2 (R d) if and only if d $\ge$ 11 and (p, q) lies on or abov
Externí odkaz:
http://arxiv.org/abs/2312.07097
Autor:
Ghergu, Marius, Yu, Zhe
We study the inequality $ -\Delta u - \frac{\mu}{|x|^2} u \geq (|x|^{-\alpha} * u^p)u^q$ in an unbounded cone $\mathcal{C}_\Omega^\rho\subset \mathbb{R}^N$ ($N\geq 2$) generated by a subdomain $\Omega$ of the unit sphere $S^{N-1}\subset \mathbb{R}^N,
Externí odkaz:
http://arxiv.org/abs/2206.06742
Autor:
Filippucci, Roberta, Ghergu, Marius
Publikováno v:
Nonlinear Analysis, 221 (2022) Article Ref No 112881
We are concerned with the study of existence and nonexistence of weak solutions to $$ \begin{cases} &\displaystyle \frac{\partial^k u}{\partial t^k}+(-\Delta)^m u\geq (K\ast |u|^p)|u|^q \quad\mbox{ in } \mathbb R^N \times \mathbb R_+,\\[0.1in] &\disp
Externí odkaz:
http://arxiv.org/abs/2203.10911
Publikováno v:
Potential Anal (2021)
We investigate the nonnegative solutions to the nonlinear integral inequality $u \ge I_{\alpha}\ast\big((I_\beta \ast u^p)u^q\big)$ a.e. in $\mathbb{R}^N$, where $\alpha, \beta\in (0,N)$, $p, q>0$ and $I_\alpha$, $I_\beta$ denote the Riesz potentials
Externí odkaz:
http://arxiv.org/abs/2106.03581
Autor:
Filippucci, Roberta, Ghergu, Marius
Publikováno v:
Discrete and Continuous Dynamical Systems, 42 (2022), 1817--1833
In this paper we investigate the nonexistence of nonnegative solutions of parabolic inequalities of the form $$\begin{cases} &u_t \pm L_\mathcal A u\geq (K\ast u^p)u^q \quad\mbox{ in } \mathbb R^N \times \mathbb (0,\infty),\, N\geq 1,\\ &u(x,0) = u_0
Externí odkaz:
http://arxiv.org/abs/2105.06130
Publikováno v:
J. Differential Equations 296 (2021) 799-821
We study the existence and non-existence of classical solutions for inequalities of type $$ \pm \Delta^m u \geq \big(\Psi(|x|)*u^p\big)u^q \quad\mbox{ in } {\mathbb R}^N (N\geq 1). $$ Here, $\Delta^m$ $(m\geq 1)$ is the polyharmonic operator, $p, q>0
Externí odkaz:
http://arxiv.org/abs/2101.12636
Publikováno v:
Proc. Royal Society of Edinburgh Section A: Mathematics, 151 (2021), 1075-1093
We study the quasilinear elliptic inequality $$ -\Delta_m u - \frac{\mu}{|x|^m}u^{m-1} \geq (I_\alpha*u^p)u^q \quad\mbox{ in }\mathbb{R}^N\setminus \overline B_1, N\geq 1, $$ where $p>0$, $q, \mu \in \mathbb{R}$, $m>1$ and $I_\alpha$ is the Riesz pot
Externí odkaz:
http://arxiv.org/abs/2009.04319
Autor:
Ghergu, Marius, Miyamoto, Yasuhito
Publikováno v:
Proc. Amer. Math. Soc. 150 (2022), 1697-1709
We investigate radial solutions for the problem \[ \begin{cases} \displaystyle -\Delta U=\frac{\lambda+\delta|\nabla U|^2}{1-U},\; U>0 & \textrm{in}\ B,\\ U=0 & \textrm{on}\ \partial B, \end{cases} \] which is related to the study of Micro-Electromec
Externí odkaz:
http://arxiv.org/abs/2007.01406