Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Ghazanfari, Behzad"'
Autor:
Ghazanfari, Behzad, Afghah, Fatemeh
This paper introduces Multi-Level feature learning alongside the Embedding layer of Convolutional Autoencoder (CAE-MLE) as a novel approach in deep clustering. We use agglomerative clustering as the multi-level feature learning that provides a hierar
Externí odkaz:
http://arxiv.org/abs/2010.02343
This paper proposes piece-wise matching layer as a novel layer in representation learning methods for electrocardiogram (ECG) classification. Despite the remarkable performance of representation learning methods in the analysis of time series, there
Externí odkaz:
http://arxiv.org/abs/2010.06510
Autor:
Ghazanfari, Behzad, Afghah, Fatemeh
This paper introduces a novel perspective about error in machine learning and proposes inverse feature learning (IFL) as a representation learning approach that learns a set of high-level features based on the representation of error for classificati
Externí odkaz:
http://arxiv.org/abs/2003.04285
This paper proposes inverse feature learning as a novel supervised feature learning technique that learns a set of high-level features for classification based on an error representation approach. The key contribution of this method is to learn the r
Externí odkaz:
http://arxiv.org/abs/2003.03689
Autor:
Ghazanfari, Behzad, Afghah, Fatemeh, Najarian, Kayvan, Mousavi, Sajad, Gryak, Jonathan, Todd, James
The high rate of false alarms in intensive care units (ICUs) is one of the top challenges of using medical technology in hospitals. These false alarms are often caused by patients' movements, detachment of monitoring sensors, or different sources of
Externí odkaz:
http://arxiv.org/abs/1904.08495
Reinforcement learning (RL) techniques, while often powerful, can suffer from slow learning speeds, particularly in high dimensional spaces. Decomposition of tasks into a hierarchical structure holds the potential to significantly speed up learning,
Externí odkaz:
http://arxiv.org/abs/1811.08275
Autor:
Ghazanfari, Behzad, Taylor, Matthew E.
Reinforcement learning (RL), while often powerful, can suffer from slow learning speeds, particularly in high dimensional spaces. The autonomous decomposition of tasks and use of hierarchical methods hold the potential to significantly speed up learn
Externí odkaz:
http://arxiv.org/abs/1709.04579
Autor:
Ghazanfari, Behzad, Mozayani, Nasser
Publikováno v:
In Expert Systems With Applications 15 July 2016 54:61-77
Publikováno v:
In Applied Soft Computing Journal December 2014 25:118-128
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.