Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Ghasem Mirhosseinkhani"'
Autor:
Ghasem Mirhosseinkhani, Narges Nazari
Publikováno v:
Journal of Mahani Mathematical Research, Vol 12, Iss 1, Pp 161-169 (2023)
A completely distributive complete lattice is called a molecular lattice. It is well known that the category TML of all topological molecular lattices with generalized order homomorphisms in the sense of Wang, is both complete and cocomplete. In this
Externí odkaz:
https://doaj.org/article/4e0b45a16ef040cfbfab1e5c1c8c4935
Autor:
Narges Nazari, Ghasem Mirhosseinkhani
Publikováno v:
Sahand Communications in Mathematical Analysis, Vol 10, Iss 1, Pp 1-15 (2018)
In this paper, we introduce the concept of the generalized topological molecular lattices as a generalization of Wang's topological molecular lattices, topological spaces, fuzzy topological spaces, L-fuzzy topological spaces and soft topological spac
Externí odkaz:
https://doaj.org/article/df465d49224147488a24cd71141d2046
Publikováno v:
Sahand Communications in Mathematical Analysis, Vol 4, Iss 1, Pp 1-14 (2016)
An object $X$ of a category $mathbf{C}$ with finite limits is called exponentiable if the functor $-times X:mathbf{C}rightarrow mathbf{C}$ has a right adjoint. There are many characterizations of the exponentiable spaces in the category $mathbf{Top}$
Externí odkaz:
https://doaj.org/article/e02bd73e313a4b678da3907fb3ea8827
Publikováno v:
Algebraic structures and their applications. 6:23-33
Autor:
Ghasem Mirhosseinkhani, Narges Nazari
Publikováno v:
2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS).
In this paper, we study locally finite property and limit points for generalized topological molecular lattices as a generalization of Wang's topological molecular lattices, topological spaces, fuzzy topological spaces, L-fuzzy topological spaces and