Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Ghareghani, Narges"'
Publikováno v:
Discrete Applied Mathematics 347:62-74, 2024
A set $S$ of vertices of a digraph $D$ is called an open neighbourhood locating-dominating set if every vertex in $D$ has an in-neighbour in $S$, and for every pair $u,v$ of vertices of $D$, there is a vertex in $S$ that is an in-neighbour of exactly
Externí odkaz:
http://arxiv.org/abs/2302.02152
Publikováno v:
In Discrete Applied Mathematics 15 April 2024 347:62-74
In this paper, we study the generalized gapped k-mer filters and derive a closed form solution for their coefficients. We consider nonnegative integers $\ell$ and $k$, with $k\leq \ell$, and an $\ell$-tuple $B=(b_1,\ldots,b_{\ell})$ of integers $b_i\
Externí odkaz:
http://arxiv.org/abs/2102.10682
Publikováno v:
Discrete Applied Mathematics 302:76-79, 2021
An open neighbourhood locating-dominating set is a set $S$ of vertices of a graph $G$ such that each vertex of $G$ has a neighbour in $S$, and for any two vertices $u,v$ of $G$, there is at least one vertex in $S$ that is a neighbour of exactly one o
Externí odkaz:
http://arxiv.org/abs/2101.05322
Autor:
Ghareghani, Narges, Sharifani, Pouyeh
For any integer $k>2$, the infinite $k$-bonacci word $W^{(k)}$, on the infinite alphabet is defined as the fixed point of the morphism $\varphi_k:\mathbb{N}\rightarrow \mathbb{N}^2 \cup \mathbb{N}$, where \begin{equation*} \varphi_k(ki+j) = \left\{ \
Externí odkaz:
http://arxiv.org/abs/1912.05253
A subset $D$ of the vertex set $V$ of a graph $G$ is called an $[1,k]$-dominating set if every vertex from $V-D$ is adjacent to at least one vertex and at most $k$ vertices of $D$. A $[1,k]$-dominating set with the minimum number of vertices is calle
Externí odkaz:
http://arxiv.org/abs/1912.03919
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The Fibonacci word $W$ on an infinite alphabet was introduced in [Zhang et al., Electronic J. Combinatorics 2017 24(2), 2-52] as a fixed point of the morphism $2i\rightarrow (2i)(2i+1)$, $(2i+1) \rightarrow (2i+2)$, $i\geq 0$. Here, for any integer $
Externí odkaz:
http://arxiv.org/abs/1911.12416
Publikováno v:
Bulletin of the Iranian Mathematical Society; Oct2024, Vol. 50 Issue 5, p1-23, 23p
Autor:
Ghareghani, Narges1 (AUTHOR), Peterin, Iztok2,3 (AUTHOR) iztok.peterin@um.si, Sharifani, Pouyeh4 (AUTHOR)
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. Jan2021, Vol. 44 Issue 1, p375-392. 18p.