Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Gevorgyan, Yeva"'
Autor:
Gevorgyan, Yeva
In this work, we investigate a minimalist model capable of accurately replicating the forced librations of an icy moon with a subsurface ocean. The model holds potential to predict the presence of a subsurface ocean through analysis of longitudinal l
Externí odkaz:
http://arxiv.org/abs/2405.03350
Autor:
Gevorgyan, Yeva
In this work we review the basic principles of the theory of the relativistic bosonic string through the study of the action functionals of Nambu-Goto and Polyakov and the techniques required for their canonical, light-cone, and path-integral quantis
The goal of this work is to investigate under which circumstances the tidal response of a stratified body can be approximated by that of a homogeneous body. We show that any multilayered planet model can be approximated by a homogeneous body, with th
Externí odkaz:
http://arxiv.org/abs/2303.05253
Publikováno v:
Celest Mech Dyn Astr 134, 10 (2022)
We present fully three-dimensional equations to describe the rotations of a body made of a deformable mantle and a fluid core. The model in its essence is similar to that used by INPOP (Integration Plan\'{e}taire de l'Observatoire de Paris), e.g. Vis
Externí odkaz:
http://arxiv.org/abs/2108.07762
Autor:
Gevorgyan, Yeva
Publikováno v:
A&A 650, A141 (2021)
In this work we investigate whether a multilayered planet can be approximated as a homogeneous planet, and in particular how well the dissipation rate of a multilayered planet can be reproduced with a homogeneous rheology. We study the case of a stra
Externí odkaz:
http://arxiv.org/abs/2103.04806
The main purpose of this work is to present a time-domain implementation of the Andrade rheology, instead of the traditional expansion in terms of a Fourier series of the tidal potential. This approach can be used in any fully three dimensional numer
Externí odkaz:
http://arxiv.org/abs/1912.09309
Publikováno v:
Phys. Rev. E 95, 052131 (2017)
We investigate one-dimensional elementary probabilistic cellular automata (PCA) whose dynamics in first-order mean-field approximation yields discrete logisticlike growth models for a single-species unstructured population with nonoverlapping generat
Externí odkaz:
http://arxiv.org/abs/1703.06007
Publikováno v:
In Icarus June 2020 343
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.