Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Geuer, Philipp"'
The cellular wireless networks are evolving towards acquiring newer capabilities, such as sensing, which will support novel use cases and applications. Many of these require indoor sensing capabilities, which can be realized by exploiting the perturb
Externí odkaz:
http://arxiv.org/abs/2409.00634
Autor:
Yajnanarayana, Vijaya, Geuer, Philipp
The sixth generation (6G) systems will likely employ orthogonal frequency division multiplexing (OFDM) waveform for performing the joint task of sensing and communication. In this paper, we design an OFDM system for integrated sensing and communicati
Externí odkaz:
http://arxiv.org/abs/2403.04201
Autor:
Palaios, Alexandros, Vielhaus, Christian L., Külzer, Daniel F., Watermann, Cara, Hernangomez, Rodrigo, Partani, Sanket, Geuer, Philipp, Krause, Anton, Sattiraju, Raja, Kasparick, Martin, Fettweis, Gerhard, Fitzek, Frank H. P., Schotten, Hans D., Stanczak, Slawomir
As cellular networks evolve towards the 6th generation, machine learning is seen as a key enabling technology to improve the capabilities of the network. Machine learning provides a methodology for predictive systems, which can make networks become p
Externí odkaz:
http://arxiv.org/abs/2302.11966
Autor:
Hernangómez, Rodrigo, Palaios, Alexandros, Watermann, Cara, Schäufele, Daniel, Geuer, Philipp, Ismayilov, Rafail, Parvini, Mohammad, Krause, Anton, Kasparick, Martin, Neugebauer, Thomas, Ramos-Cantor, Oscar D., Tchouankem, Hugues, Calvo, Jose Leon, Chen, Bo, Fettweis, Gerhard, Stańczak, Sławomir
Publikováno v:
in IEEE Communications Magazine, vol. 62, no. 4, pp. 90-95, April 2024
This paper presents two wireless measurement campaigns in industrial testbeds: industrial Vehicle-to-vehicle (iV2V) and industrial Vehicle-to-infrastructure plus Sensor (iV2I+), together with detailed information about the two captured datasets. iV2V
Externí odkaz:
http://arxiv.org/abs/2301.03364
Autor:
Hernangómez, Rodrigo, Geuer, Philipp, Palaios, Alexandros, Schäufele, Daniel, Watermann, Cara, Taleb-Bouhemadi, Khawla, Parvini, Mohammad, Krause, Anton, Partani, Sanket, Vielhaus, Christian, Kasparick, Martin, Külzer, Daniel F., Burmeister, Friedrich, Fitzek, Frank H. P., Schotten, Hans D., Fettweis, Gerhard, Stańczak, Sławomir
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and
Externí odkaz:
http://arxiv.org/abs/2212.10343
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Palaios, Alexandros, Vielhaus, Christian L., Külzer, Daniel F., Watermann, Cara, Hernangomez, Rodrigo, Partani, Sanket, Geuer, Philipp, Krause, Anton, Sattiraju, Raja, Kasparick, Martin, Fettweis, Gerhard, Fitzek, Frank H. P., Schotten, Hans D., Stanczak, Slawomir
As cellular networks evolve towards the 6th Generation (6G), Machine Learning (ML) is seen as a key enabling technology to improve the capabilities of the network. ML provides a methodology for predictive systems, which, in turn, can make networks be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::859232420f081a129e7fa8a7013a6944
http://arxiv.org/abs/2302.11966
http://arxiv.org/abs/2302.11966
Autor:
Hernangómez, Rodrigo, Palaios, Alexandros, Watermann, Cara, Schäufele, Daniel, Geuer, Philipp, Ismayilov, Rafail, Parvini, Mohammad, Krause, Anton, Kasparick, Martin, Neugebauer, Thomas, Ramos-Cantor, Oscar D., Tchouankem, Hugues, Calvo, Jose Leon, Chen, Bo, Fettweis, Gerhard, Stańczak, Sławomir
This paper presents two wireless measurement campaigns in industrial testbeds: industrial Vehicle-to-vehicle (iV2V) and industrial Vehicle-to-infrastructure plus Sensor (iV2I+). Detailed information about the two captured datasets is provided as well
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9607652919284e7e5cd1fd80f24cdf21