Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Gert Pedersen Aamand"'
Autor:
Hafedh Ben Zaabza, Matti Taskinen, Esa A. Mäntysaari, Timo Pitkänen, Gert Pedersen Aamand, Ismo Strandén
Publikováno v:
Journal of Dairy Science, Vol 105, Iss 6, Pp 5221-5237 (2022)
ABSTRACT: Approximate multistep methods to calculate reliabilities for estimated breeding values in large genetic evaluations were developed for single-trait (ST-R2A) and multitrait (MT-R2A) single-step genomic BLUP (ssGBLUP) models. First, a traditi
Externí odkaz:
https://doaj.org/article/5c475f223123458c9a46ee1605abe334
Autor:
Aoxing Liu, Mogens Sandø Lund, Didier Boichard, Emre Karaman, Bernt Guldbrandtsen, Sebastien Fritz, Gert Pedersen Aamand, Ulrik Sander Nielsen, Goutam Sahana, Yachun Wang, Guosheng Su
Publikováno v:
Genetics Selection Evolution, Vol 52, Iss 1, Pp 1-17 (2020)
Abstract Background Sequencing data enable the detection of causal loci or single nucleotide polymorphisms (SNPs) highly linked to causal loci to improve genomic prediction. However, until now, studies on integrating such SNPs using a single-step gen
Externí odkaz:
https://doaj.org/article/3f75709fef3c4f9eaf8ea1d04ea3480a
Autor:
Hongding Gao, Per Madsen, Gert Pedersen Aamand, Jørn Rind Thomasen, Anders Christian Sørensen, Just Jensen
Publikováno v:
BMC Genomics, Vol 20, Iss 1, Pp 1-8 (2019)
Abstract Background After the extensive implementation of genomic selection (GS), the choice of the statistical model and data used to estimate variance components (VCs) remains unclear. A primary concern is that VCs estimated from a traditional pedi
Externí odkaz:
https://doaj.org/article/aa107512cca34ed5a789fc7f021c69d2
Autor:
Naveen Kumar Kadri, Goutam Sahana, Carole Charlier, Terhi Iso-Touru, Bernt Guldbrandtsen, Latifa Karim, Ulrik Sander Nielsen, Frank Panitz, Gert Pedersen Aamand, Nina Schulman, Michel Georges, Johanna Vilkki, Mogens Sandø Lund, Tom Druet
Publikováno v:
PLoS Genetics, Vol 10, Iss 1, p e1004049 (2014)
In dairy cattle, the widespread use of artificial insemination has resulted in increased selection intensity, which has led to spectacular increase in productivity. However, cow fertility has concomitantly severely declined. It is generally assumed t
Externí odkaz:
https://doaj.org/article/d11c114a650a46cbaaa57ec6bcf08d10
Autor:
Goutam Sahana, Ulrik Sander Nielsen, Gert Pedersen Aamand, Mogens Sandø Lund, Bernt Guldbrandtsen
Publikováno v:
PLoS ONE, Vol 8, Iss 12, p e82909 (2013)
Using genomic data, lethal recessives may be discovered from haplotypes that are common in the population but never occur in the homozygote state in live animals. This approach only requires genotype data from phenotypically normal (i.e. live) indivi
Externí odkaz:
https://doaj.org/article/ac68f216c5a549bc9b93b366815fd6ba
Publikováno v:
Journal of Dairy Science. 104:10049-10058
The growing amount of genomic information in dairy cattle has increased computational and modeling challenges in the single-step evaluations. The computational challenges are due to the dense inverses of genomic (G) and pedigree (A22) relationship ma
Publikováno v:
Journal of Dairy Science. 103:6299-6310
Single-step genomic BLUP (ssGBLUP) is a powerful approach for breeding value prediction in populations with a limited number of genotyped animals. However, conflicting genomic (G) and pedigree (A22) relationship matrices complicate the implementation
Autor:
Didier Boichard, Emre Karaman, Xiaowei Mao, Yachun Wang, Gert Pedersen Aamand, Aoxing Liu, Sébastien Fritz, Mogens Sandø Lund, Guosheng Su
Publikováno v:
Scientific Reports, Vol 10, Iss 1, Pp 1-9 (2020)
Liu, A, Lund, M S, Boichard, D, Mao, X, Karaman, E, Fritz, S, Aamand, G P, Wang, Y & Su, G 2020, ' Imputation for sequencing variants preselected to a customized low-density chip ', Scientific Reports, vol. 10, 9524 . https://doi.org/10.1038/s41598-020-66523-7
Scientific Reports
Scientific Reports, Nature Publishing Group, 2020, 10 (1), pp.9524. ⟨10.1038/s41598-020-66523-7⟩
Liu, A, Lund, M S, Boichard, D, Mao, X, Karaman, E, Fritz, S, Aamand, G P, Wang, Y & Su, G 2020, ' Imputation for sequencing variants preselected to a customized low-density chip ', Scientific Reports, vol. 10, 9524 . https://doi.org/10.1038/s41598-020-66523-7
Scientific Reports
Scientific Reports, Nature Publishing Group, 2020, 10 (1), pp.9524. ⟨10.1038/s41598-020-66523-7⟩
the sequencing variants preselected from association analyses and bioinformatics analyses could improve genomic prediction. In this study, the imputation of sequencing SNPs preselected from major dairy breeds in Denmark-Finland-Sweden (DFS) and Franc
Publikováno v:
Ma, P, Lund, M S, Aamand, G P & Su, G 2019, ' Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population ', Journal of Dairy Science, vol. 102, no. 8, pp. 7237-7247 . https://doi.org/10.3168/jds.2018-15815
Relatedness between reference and test animals has an important effect on the reliability of genomic prediction for test animals. Because genomic prediction has been widely applied in practical cattle breeding and bulls have been selected according t
Autor:
Bernt Guldbrandtsen, Didier Boichard, Goutam Sahana, Emre Karaman, Aoxing Liu, Yachun Wang, Guosheng Su, Mogens Sandø Lund, Sébastien Fritz, U. S. Nielsen, Gert Pedersen Aamand
Publikováno v:
Liu, A, Lund, M S, Boichard, D, Karaman, E, Guldbrandtsen, B, Fritz, S, Aamand, G P, Nielsen, U S, Sahana, G, Wang, Y & Su, G 2020, ' Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses ', Genetics Selection Evolution, vol. 52, no. 1, 48 . https://doi.org/10.1186/s12711-020-00568-0
Genetics, Selection, Evolution : GSE
Genetics Selection Evolution, Vol 52, Iss 1, Pp 1-17 (2020)
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2020, 52 (1), pp.48. ⟨10.1186/s12711-020-00568-0⟩
Genetics, Selection, Evolution : GSE
Genetics Selection Evolution, Vol 52, Iss 1, Pp 1-17 (2020)
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2020, 52 (1), pp.48. ⟨10.1186/s12711-020-00568-0⟩
International audience; Background: Sequencing data enable the detection of causal loci or single nucleotide polymorphisms (SNPs) highly linked to causal loci to improve genomic prediction. However, until now, studies on integrating such SNPs using a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b67700b69dd3cfd3eca876082f97ddca
https://pure.au.dk/portal/da/publications/weighted-singlestep-genomic-best-linear-unbiased-prediction-integrating-variants-selected-from-sequencing-data-by-association-and-bioinformatics-analyses(af14ec23-4867-4a01-90ec-906cb9f88485).html
https://pure.au.dk/portal/da/publications/weighted-singlestep-genomic-best-linear-unbiased-prediction-integrating-variants-selected-from-sequencing-data-by-association-and-bioinformatics-analyses(af14ec23-4867-4a01-90ec-906cb9f88485).html