Zobrazeno 1 - 10
of 140
pro vyhledávání: '"Gerritsma, M."'
In this work we use algebraic dual representations in conjunction with domain decomposition methods for Darcy equations. We define the broken Sobolev spaces and their finite dimensional counterparts. In addition, a global trace space is defined that
Externí odkaz:
http://arxiv.org/abs/2202.10073
Autor:
Jain, V., Gerritsma, M.
We give a derivation for the value of inf-sup constant for the bilinear form (p, div u). We prove that the value of inf-sup constant is equal to 1.0 in all cases and is independent of the size and shape of the domain. Numerical tests for validation o
Externí odkaz:
http://arxiv.org/abs/2105.10673
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Computer Methods in Applied Mechanics and Engineering 1 February 2023 404
In this paper a mixed spectral element formulation is presented for planar, linear elasticity. The degrees of freedom for the stress are integrated traction components, i.e. surface force components. As a result the tractions between elements are con
Externí odkaz:
http://arxiv.org/abs/1605.05444
In this work, a geometric discretization of the Navier-Stokes equations is sought by treating momentum as a covector-valued volume-form. The novelty of this approach is that we treat conservation of momentum as a tensor equation and describe a higher
Externí odkaz:
http://arxiv.org/abs/1304.6991
Publikováno v:
In Journal of Computational Physics 1 February 2019 378:615-633
Conservation laws, in for example, electromagnetism, solid and fluid mechanics, allow an exact discrete representation in terms of line, surface and volume integrals. We develop high order interpolants, from any basis that is a partition of unity, th
Externí odkaz:
http://arxiv.org/abs/1209.1793
Publikováno v:
In Journal of Computational Physics 15 March 2018 357:282-304
Autor:
Palha, A., Gerritsma, M.
Publikováno v:
In Journal of Computational Physics 1 January 2017 328:200-220