Zobrazeno 1 - 10
of 92
pro vyhledávání: '"Gerold Alsmeyer"'
Autor:
Gerold Alsmeyer, Matthias Meiners
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AI,..., Iss Proceedings (2008)
Gantert and Müller (2006) proved that a critical branching random walk (BRW) on the integer lattice is transient by analyzing this problem within the more general framework of branching Markov chains and making use of Lyapunov functions. The main pu
Externí odkaz:
https://doaj.org/article/a0c6c75be88a4278a02cfd2dd3b5e44e
Autor:
Gerold Alsmeyer
Publikováno v:
Stochastics and Quality Control. 36:111-127
Linear fractional Galton–Watson branching processes in i.i.d. random environment are, on the quenched level, intimately connected to random difference equations by the evolution of the random parameters of their linear fractional marginals. On the
Autor:
Gerold Alsmeyer
Publikováno v:
Advances in Applied Probability. 50:31-46
Let (Mn,Sn)n≥0 be a Markov random walk with positive recurrent driving chain (Mn)n≥0 on the countable state space 𝒮 with stationary distribution π. Suppose also that lim supn→∞Sn=∞ almost surely, so that the walk has almost-sure finite
Publikováno v:
Electron. J. Probab.
We prove distributional limit theorems for the length of the largest convex minorant of a one-dimensional random walk with independent identically distributed increments. Depending on the increment law, there are several regimes with different limit
Autor:
Gerold Alsmeyer, Fabian Buckmann
Publikováno v:
Journal of Theoretical Probability. 31:2266-2342
Two fundamental theorems by Spitzer/Erickson and Kesten/Maller on the fluctuation type (positive divergence, negative divergence or oscillation) of a real-valued random walk $(S_{n})_{n\ge 0}$ with iid increments $X_{1},X_{2},\ldots$ and the existenc
Publikováno v:
Stochastic Processes and their Applications. 127:995-1017
The Bernoulli sieve is the infinite Karlin “balls-in-boxes” scheme with random probabilities of stick-breaking type. Assuming that the number of placed balls equals n , we prove several functional limit theorems (FLTs) in the Skorohod space D [ 0
Autor:
Gerold Alsmeyer, Bastien Mallein
Given a nonincreasing null sequence $T = (T_j)_{j \ge 1}$ of nonnegative random variables satisfying some classical integrability assumptions and $\mathbb{E}(\sum_{j}T_{j}^{\alpha})=1$ for some $\alpha>0$, we characterize the solutions of the well-kn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b8c5db173bfd53cf116992c5f47b3256
https://hal.archives-ouvertes.fr/hal-02177977/document
https://hal.archives-ouvertes.fr/hal-02177977/document
Autor:
Gerold Alsmeyer, Kilian Raschel
Publikováno v:
Journal of Mathematical Biology
Journal of Mathematical Biology, Springer Verlag (Germany), 2019, 78 (6), pp.1841-1874. ⟨10.1007/s00285-019-01328-5⟩
Journal of Mathematical Biology, 2019, 78 (6), pp.1841-1874. ⟨10.1007/s00285-019-01328-5⟩
Journal of Mathematical Biology, Springer Verlag (Germany), 2019, 78 (6), pp.1841-1874. ⟨10.1007/s00285-019-01328-5⟩
Journal of Mathematical Biology, 2019, 78 (6), pp.1841-1874. ⟨10.1007/s00285-019-01328-5⟩
31 pages, 7 figures; International audience; In this paper, the extinction problem for a class of distylous plant populations is considered within the framework of certain nonhomogeneous nearest-neighbor random walks in the positive quadrant. For the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::06d8bacf919ade5ea31a925b5492fc3e
https://hal.archives-ouvertes.fr/hal-01895778
https://hal.archives-ouvertes.fr/hal-01895778
Autor:
Gerold Alsmeyer, Chiranjib Mukherjee
The concept of homology, originally developed as a useful tool in algebraic topology, has by now become pervasive in quite different branches of mathematics. The notion particularly appears quite naturally in ergodic theory in the study of measure-pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b0473d5c93e666b0a41b813a7e85299
Autor:
Sören Gröttrup, Gerold Alsmeyer
Publikováno v:
Stochastic Processes and their Applications. 126:1839-1883
We consider a discrete-time host–parasite model for a population of cells which are colonized by proliferating parasites. The cell population grows like an ordinary Galton–Watson process, but in reflection of real biological settings the multipli