Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Germain, Mathieu"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Serban, Iulian V., Sankar, Chinnadhurai, Germain, Mathieu, Zhang, Saizheng, Lin, Zhouhan, Subramanian, Sandeep, Kim, Taesup, Pieper, Michael, Chandar, Sarath, Ke, Nan Rosemary, Rajeswar, Sai, de Brebisson, Alexandre, Sotelo, Jose M. R., Suhubdy, Dendi, Michalski, Vincent, Nguyen, Alexandre, Pineau, Joelle, Bengio, Yoshua
We present MILABOT: a deep reinforcement learning chatbot developed by the Montreal Institute for Learning Algorithms (MILA) for the Amazon Alexa Prize competition. MILABOT is capable of conversing with humans on popular small talk topics through bot
Externí odkaz:
http://arxiv.org/abs/1801.06700
Autor:
Germain, Mathieu
Ce mémoire introduit MADE, un nouveau modèle génératif spécifiquement développé pour l’estimation de distribution de probabilité pour données binaires. Ce modèle se base sur le simple autoencodeur et le modifie de telle sorte que sa sorti
Externí odkaz:
http://hdl.handle.net/11143/6910
Autor:
Serban, Iulian V., Sankar, Chinnadhurai, Germain, Mathieu, Zhang, Saizheng, Lin, Zhouhan, Subramanian, Sandeep, Kim, Taesup, Pieper, Michael, Chandar, Sarath, Ke, Nan Rosemary, Rajeshwar, Sai, de Brebisson, Alexandre, Sotelo, Jose M. R., Suhubdy, Dendi, Michalski, Vincent, Nguyen, Alexandre, Pineau, Joelle, Bengio, Yoshua
We present MILABOT: a deep reinforcement learning chatbot developed by the Montreal Institute for Learning Algorithms (MILA) for the Amazon Alexa Prize competition. MILABOT is capable of conversing with humans on popular small talk topics through bot
Externí odkaz:
http://arxiv.org/abs/1709.02349
Autor:
The Theano Development Team, Al-Rfou, Rami, Alain, Guillaume, Almahairi, Amjad, Angermueller, Christof, Bahdanau, Dzmitry, Ballas, Nicolas, Bastien, Frédéric, Bayer, Justin, Belikov, Anatoly, Belopolsky, Alexander, Bengio, Yoshua, Bergeron, Arnaud, Bergstra, James, Bisson, Valentin, Snyder, Josh Bleecher, Bouchard, Nicolas, Boulanger-Lewandowski, Nicolas, Bouthillier, Xavier, de Brébisson, Alexandre, Breuleux, Olivier, Carrier, Pierre-Luc, Cho, Kyunghyun, Chorowski, Jan, Christiano, Paul, Cooijmans, Tim, Côté, Marc-Alexandre, Côté, Myriam, Courville, Aaron, Dauphin, Yann N., Delalleau, Olivier, Demouth, Julien, Desjardins, Guillaume, Dieleman, Sander, Dinh, Laurent, Ducoffe, Mélanie, Dumoulin, Vincent, Kahou, Samira Ebrahimi, Erhan, Dumitru, Fan, Ziye, Firat, Orhan, Germain, Mathieu, Glorot, Xavier, Goodfellow, Ian, Graham, Matt, Gulcehre, Caglar, Hamel, Philippe, Harlouchet, Iban, Heng, Jean-Philippe, Hidasi, Balázs, Honari, Sina, Jain, Arjun, Jean, Sébastien, Jia, Kai, Korobov, Mikhail, Kulkarni, Vivek, Lamb, Alex, Lamblin, Pascal, Larsen, Eric, Laurent, César, Lee, Sean, Lefrancois, Simon, Lemieux, Simon, Léonard, Nicholas, Lin, Zhouhan, Livezey, Jesse A., Lorenz, Cory, Lowin, Jeremiah, Ma, Qianli, Manzagol, Pierre-Antoine, Mastropietro, Olivier, McGibbon, Robert T., Memisevic, Roland, van Merriënboer, Bart, Michalski, Vincent, Mirza, Mehdi, Orlandi, Alberto, Pal, Christopher, Pascanu, Razvan, Pezeshki, Mohammad, Raffel, Colin, Renshaw, Daniel, Rocklin, Matthew, Romero, Adriana, Roth, Markus, Sadowski, Peter, Salvatier, John, Savard, François, Schlüter, Jan, Schulman, John, Schwartz, Gabriel, Serban, Iulian Vlad, Serdyuk, Dmitriy, Shabanian, Samira, Simon, Étienne, Spieckermann, Sigurd, Subramanyam, S. Ramana, Sygnowski, Jakub, Tanguay, Jérémie, van Tulder, Gijs, Turian, Joseph, Urban, Sebastian, Vincent, Pascal, Visin, Francesco, de Vries, Harm, Warde-Farley, David, Webb, Dustin J., Willson, Matthew, Xu, Kelvin, Xue, Lijun, Yao, Li, Zhang, Saizheng, Zhang, Ying
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially
Externí odkaz:
http://arxiv.org/abs/1605.02688
Publikováno v:
Proceedings of the 32nd International Conference on Machine Learning, JMLR W&CP 37:881-889, 2015
There has been a lot of recent interest in designing neural network models to estimate a distribution from a set of examples. We introduce a simple modification for autoencoder neural networks that yields powerful generative models. Our method masks
Externí odkaz:
http://arxiv.org/abs/1502.03509
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
St-Germain, Mathieu
Publikováno v:
Supreme Court Law Review; 2020, Vol. 95, p199-205, 7p