Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Gergely Harcos"'
Paul Turán, one of the greatest Hungarian mathematicians, was born 100 years ago, on August 18, 1910. To celebrate this occasion the Hungarian Academy of Sciences, the Alfréd Rényi Institute of Mathematics, the János Bolyai Mathematical Society a
Autor:
Péter L. Erdős, Gergely Harcos, Shubha R. Kharel, Péter Maga, Tamás Róbert Mezei, Zoltán Toroczkai
Let us call a simple graph on $n\geq 2$ vertices a prime gap graph if its vertex degrees are $1$ and the first $n-1$ prime gaps. We show that such a graph exists for every large $n$, and in fact for every $n\geq 2$ if we assume the Riemann hypothesis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01f3676cdf4ed36811bb46d0d0bfd66b
http://arxiv.org/abs/2205.00580
http://arxiv.org/abs/2205.00580
Autor:
Gergely Harcos, Daniel Soltész
Publikováno v:
Combinatorica. 40:435-454
We say that two graphs on the same vertex set are G-creating if their union (the union of their edges) contains G as a subgraph. Let Hn(G) be the maximum number of pairwise G-creating Hamiltonian paths of Kn. Cohen, Fachini and Korner proved $${n^{\f
Publikováno v:
Journal d'Analyse Mathématique. 140:483-510
Let φ be an L2-normalized spherical vector in an everywhere unramified cuspidal automorphic representation of PGLn over ℚ with Laplace eigenvalue λφ. We establish explicit estimates for various quantities related to φ that are uniform in λφ.
Publikováno v:
Journal de Mathématiques Pures et Appliquées
We open a new perspective on the sup-norm problem and propose a version for non-spherical Maass forms when the maximal compact K is non-abelian and the dimension of the K-type gets large. We solve this problem for an arithmetic quotient of G=SL_2(C)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::273a5b386c7e5b60a195ac467073bdab
http://arxiv.org/abs/2107.05973
http://arxiv.org/abs/2107.05973
Publikováno v:
Journal of Number Theory. 198:239-249
We strengthen the recent result of Cherubini and Guerreiro on the square mean of the error term in the prime geodesic theorem for PSL 2 ( Z ) . We also develop a short interval version of this result.
Publikováno v:
Israel Journal of Mathematics. 229:357-379
Let φ be a spherical Hecke–Maas cusp form on the non-compact space PGL3(ℤ)PGL3(ℝ). We establish various pointwise upper bounds for φ in terms of its Laplace eigenvalue λφ. These imply, for φ arithmetically normalized and tempered at the ar
Publikováno v:
International Mathematics Research Notices
We estimate, in a number field, the number of elements and the maximal number of linearly independent elements, with prescribed bounds on their valuations. As a by-product, we obtain new bounds for the successive minima of ideal lattices. Our argumen
Publikováno v:
Journal of the European Mathematical Society
We solve the sup-norm problem for spherical Hecke-Maass newforms of square-free level for the group GL(2) over a number field, with a power saving over the local geometric bound simultaneously in the eigenvalue and the level aspect. Our bounds featur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f83cb4192a3cc8842df51a3ad336dfa
http://arxiv.org/abs/1605.09360
http://arxiv.org/abs/1605.09360
Autor:
Valentin Blomer, Gergely Harcos
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal)
We extend our hybrid bounds for twisted automorphic L-functions L ( s , f ⊗ χ ) $L(s, f \otimes \chi )$ on the critical line [J. reine angew. Math. 621 (2008), 53–79] to cusp forms f with arbitrary nebentypus, and correct an error in the proof.