Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Gerdes, Peter M."'
Autor:
Cholak, Peter A., Gerdes, Peter M.
In [5] Soare and Stob prove that if $A$ is an r.e. set which isn't computable then there is a set of the form $A \oplus W^A_e$ which isn't of r.e. Turing degree. If we define a properly $n+1$-REA set to be an $n+1$-REA set which isn't Turing equivale
Externí odkaz:
http://arxiv.org/abs/2107.01299
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Harrington and Soare introduced the notion of an n-tardy set. They showed that there is a nonempty $\mathcal{E}$ property Q(A) such that if Q(A) then A is 2-tardy. Since they also showed no 2-tardy set is complete, Harrington and Soare showed that th
Externí odkaz:
http://arxiv.org/abs/1101.0228
Autor:
Gerdes, Peter M.
While much work has been done to characterize the Turing degrees computing members of various collections of fast growing functions, much less has been done to characterize the rate of growth necessary to compute particular degrees. Prior work has sh
Externí odkaz:
http://arxiv.org/abs/1012.3427
Autor:
Gerdes, Peter M.
It is easy to see that no n-REA set can form a (non-trivial) minimal pair with 0' and only slightly more difficult to observe that no {\omega}-REA set can form a (non-trivial) minimal pair with 0". Shore has asked whether this can be improved to show
Externí odkaz:
http://arxiv.org/abs/1012.0950
Autor:
Andrews, Uri1 (AUTHOR) uri.andrews@gmail.com, Gerdes, Peter M2 (AUTHOR), Lempp, Steffen1 (AUTHOR), Miller, Joseph S1 (AUTHOR), Schweber, Noah D1 (AUTHOR)
Publikováno v:
Logic Journal of the IGPL. Jun2022, Vol. 30 Issue 3, p499-518. 20p.
Publikováno v:
In Annals of Pure and Applied Logic September 2012 163(9):1252-1270
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gerdes, Peter M.
It is easy to see that no n-REA set can form a (non-trivial) minimal pair with 0' and only slightly more difficult to observe that no ��-REA set can form a (non-trivial) minimal pair with 0". Shore has asked whether this can be improved to show t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6a072a46f10879b8fd6fab9d5390980b