Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Gerbner, D��niel"'
Autor:
Gerbner, D��niel
The suspension of the path $P_4$ consists of a $P_4$ and an additional vertex connected to each of the four vertices, and is denoted by $\hat{P_4}$. The largest number of triangles in a $\hat{P_4}$-free $n$-vertex graph is denoted by $ex(n,K_3,\hat{P
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f3be588cd82f72dd3a3db3102a67e201
http://arxiv.org/abs/2203.12527
http://arxiv.org/abs/2203.12527
Autor:
Gerbner, D��niel
A Berge copy of a graph is a hypergraph obtained by enlarging the edges arbitrarily. Gr\'osz, Methuku and Tompkins in 2020 showed that for any graph $F$, there is an integer $r_0=r_0(F)$, such that for any $r\ge r_0$, any $r$-uniform hypergraph witho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::79a7d3a0cbf2df6e4a7f5f7ca6b1fb42
http://arxiv.org/abs/2111.00356
http://arxiv.org/abs/2111.00356
Autor:
Gerbner, D��niel
The profile vector of a family $\mathcal{F}$ of subsets of an $n$-element set is $(f_0,f_1, \ldots, f_n)$ where $f_i$ denotes the number of the $i$-element members of $\mathcal{F}$. In this paper we determine the extreme points of the set of profile
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0425b765753da99e2f0e8f2cbe7800bf
http://arxiv.org/abs/2109.05615
http://arxiv.org/abs/2109.05615
A hypergraph $H=(V(H), E(H))$ is a Berge copy of a graph $F$, if $V(F)\subset V(H)$ and there is a bijection $f:E(F)\rightarrow E(H)$ such that for any $e\in E(F)$ we have $e\subset f(e)$. A hypergraph is Berge-$F$-free if it does not contain any Ber
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a9581a993b3a1162d8dfba1fcae4046f
http://arxiv.org/abs/2103.08437
http://arxiv.org/abs/2103.08437
For posets $P$ and $Q$, extremal and saturation problems about weak and strong $P$-free subposets of $Q$ have been studied mostly in the case $Q$ is the Boolean poset $Q_n$, the poset of all subsets of an $n$-element set ordered by inclusion. In this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::429d0772f4b88e843409b66d8f664b8e
http://arxiv.org/abs/2102.08297
http://arxiv.org/abs/2102.08297
Autor:
Gerbner, D��niel
In the so-called generalized Tur��n problems we study the largest number of copies of $H$ in an $n$-vertex $F$-free graph $G$. Here we introduce a variant, where $F$ is not forbidden, but we restrict how copies of $H$ and $F$ can be placed in $G$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::71a38654be26ab547905c3641a168faa
Autor:
Gerbner, D��niel, Patk��s, Bal��zs
For fixed graphs $F$ and $H$, the generalized Tur��n problem asks for the maximum number $ex(n,H,F)$ of copies of $H$ that an $n$-vertex $F$-free graph can have. In this paper, we focus on cases with $F$ being $B_{r,s}$, the graph consisting of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5e74c3ba573cbd180b77e978019ed136
Autor:
Gerbner, D��niel
We study the generalized Tur��n function $ex(n,H,F)$, when $H$ or $F$ is a double star $S_{a,b}$, which is a tree with a central edge $uv$, $a$ leaves connected to $u$ and $b$ leaves connected to $v$. We determine $ex(n,K_k,S_{a,b})$ and $ex(n,S_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::45ebc0843d3ca26d9f54c01512cc1064
Autor:
Gerbner, D��niel, Patk��s, Bal��zs
For graph $G$, $F$ and integer $n$, the generalized Tu��n number $ex(n,G,F)$ denotes the maximum number of copies of $G$ that an $F$-free $n$-vertex graph can have. We study this parameter when both $G$ and $F$ are complete bipartite graphs.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::85e0e8091114c26f1c6a539200ebf537
Autor:
Gerbner, D��niel
We study the generalized Tur��n function $ex(n,H,F)$, when $H$ or $F$ is $K_{2,t}$. We determine the order of magnitude of $ex(n,H,K_{2,t})$ when $H$ is a tree, and determine its asymptotics for a large class of trees. We also determine the asymp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::65dde8900c18b6c189f3a1cc0f528475