Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Gerardo Roa"'
Autor:
Gerardo Roa Dabike, Trevor J. Cox, Alex J. Miller, Bruno M. Fazenda, Simone Graetzer, Rebecca R. Vos, Michael A. Akeroyd, Jennifer Firth, William M. Whitmer, Scott Bannister, Alinka Greasley, Jon P. Barker
Publikováno v:
Data in Brief, Vol 57, Iss , Pp 111199- (2024)
This paper presents the Cadenza Woodwind Dataset. This publicly available data is synthesised audio for woodwind quartets including renderings of each instrument in isolation. The data was created to be used as training data within Cadenza's second o
Externí odkaz:
https://doaj.org/article/2e7a910c75b94d9b8d28c10c1978178d
Autor:
Scott Bannister, Alinka E. Greasley, Trevor J. Cox, Michael A. Akeroyd, Jon Barker, Bruno Fazenda, Jennifer Firth, Simone N. Graetzer, Gerardo Roa Dabike, Rebecca R. Vos, William M. Whitmer
Publikováno v:
Frontiers in Psychology, Vol 15 (2024)
IntroductionPrevious work on audio quality evaluation has demonstrated a developing convergence of the key perceptual attributes underlying judgments of quality, such as timbral, spatial and technical attributes. However, across existing research the
Externí odkaz:
https://doaj.org/article/2d30fa26d0684789aba317db7b030d6a
Autor:
Dabike, Gerardo Roa, Akeroyd, Michael A., Bannister, Scott, Barker, Jon P., Cox, Trevor J., Fazenda, Bruno, Firth, Jennifer, Graetzer, Simone, Greasley, Alinka, Vos, Rebecca R., Whitmer, William M.
It is well established that listening to music is an issue for those with hearing loss, and hearing aids are not a universal solution. How can machine learning be used to address this? This paper details the first application of the open challenge me
Externí odkaz:
http://arxiv.org/abs/2409.05095
Autor:
Gerardo Roa Ogando
Publikováno v:
Cuaderno de Pedagogía Universitaria, Vol 18, Iss 35 (2021)
En este artículo se parte de la idea de que la producción textual constituye un criterio clave para la evaluación de la comprensión lectora en textos digitales. Por ello, se asume que cualquier propuesta pedagógica que tenga como fin propiciar e
Externí odkaz:
https://doaj.org/article/29ce23ea8bfd420e93a73833a2e0269c
Autor:
Dabike, Gerardo Roa, Bannister, Scott, Firth, Jennifer, Graetzer, Simone, Vos, Rebecca, Akeroyd, Michael A., Barker, Jon, Cox, Trevor J., Fazenda, Bruno, Greasley, Alinka, Whitmer, William
The Cadenza project aims to improve the audio quality of music for those who have a hearing loss. This is being done through a series of signal processing challenges, to foster better and more inclusive technologies. In the first round, two common li
Externí odkaz:
http://arxiv.org/abs/2310.05799
Autor:
Dabike, Gerardo Roa, Akeroyd, Michael A., Bannister, Scott, Barker, Jon, Cox, Trevor J., Fazenda, Bruno, Firth, Jennifer, Graetzer, Simone, Greasley, Alinka, Vos, Rebecca R., Whitmer, William M.
This paper reports on the design and results of the 2024 ICASSP SP Cadenza Challenge: Music Demixing/Remixing for Hearing Aids. The Cadenza project is working to enhance the audio quality of music for those with a hearing loss. The scenario for the c
Externí odkaz:
http://arxiv.org/abs/2310.03480
Autor:
Dabike, Gerardo Roa, Barker, Jon
In this paper, we ask whether vocal source features (pitch, shimmer, jitter, etc) can improve the performance of automatic sung speech recognition, arguing that conclusions previously drawn from spoken speech studies may not be valid in the sung spee
Externí odkaz:
http://arxiv.org/abs/2102.10376
Autor:
Jennifer L. Firth, Trevor J. Cox, Alinka Greasley, Jon P. Barker, William M. Whitmer, Bruno Fazenda, Scott Bannister, Simone Graetzer, Rebecca Vos, Gerardo Roa, Michael A. Akeroyd
Publikováno v:
The Journal of the Acoustical Society of America. 153:A332-A332
Interior car noise refers to the general noise generated by the engine transmission, the interaction between road and types, and weather conditions such as turbulent wind. For drivers or passengers with hearing loss, these can create especially chall
Autor:
Jon Barker, Gerardo Roa Dabike
Publikováno v:
ICASSP
In this paper, we ask whether vocal source features (pitch, shimmer, jitter, etc) can improve the performance of automatic sung speech recognition, arguing that conclusions previously drawn from spoken speech studies may not be valid in the sung spee
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9187fda35e17249dd140675f00f58ec
http://arxiv.org/abs/2102.10376
http://arxiv.org/abs/2102.10376
Autor:
Jon Barker, Gerardo Roa Dabike
Publikováno v:
INTERSPEECH