Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Gerard Mor"'
Publikováno v:
Energy, Sustainability and Society, Vol 13, Iss 1, Pp 1-14 (2023)
Abstract Background To transition our energy system toward sustainable production and consumption, it is important to successfully engage consumers to become active participants in this process. One form this can take is manual demand response, where
Externí odkaz:
https://doaj.org/article/6062c0f3aa6c4203a42e96dc63a42374
Autor:
Gerard Laguna, Gerard Mor, Florencia Lazzari, Eloi Gabaldon, Arash Erfani, Dirk Saelens, Jordi Cipriano
Publikováno v:
Energy Reports, Vol 8, Iss , Pp 10193-10202 (2022)
The interest in model predictive control (MPC) for buildings has grown in recent years due to the widespread implementation of dynamic electricity tariffs, energy flexibility and distributed energy resources. The MPC applied on buildings is a computa
Externí odkaz:
https://doaj.org/article/89e8a6a5d0874a1db1b7f8c2632854de
Autor:
Florencia Lazzari, Gerard Mor, Jordi Cipriano, Eloi Gabaldon, Benedetto Grillone, Daniel Chemisana, Francesc Solsona
Publikováno v:
Energy Reports, Vol 8, Iss , Pp 3680-3691 (2022)
This paper presents a novel approach to forecast day-ahead electricity consumption for residential households where highly irregular human behaviour plays a significant role. The methodology requires data from fiscal smart meters, which makes it appl
Externí odkaz:
https://doaj.org/article/a145fee2924443ad8f435fb6a1bc94a7
Autor:
Gerard Mor, Jordi Cipriano, Giacomo Martirano, Francesco Pignatelli, Chiara Lodi, Florencia Lazzari, Benedetto Grillone, Daniel Chemisana
Publikováno v:
Energy Reports, Vol 7, Iss , Pp 5667-5684 (2021)
A bottom-up electricity characterisation methodology of the building stock at the local level is presented. It is based on the statistical learning analysis of aggregated energy consumption data, weather data, cadastre, and socioeconomic information.
Externí odkaz:
https://doaj.org/article/70d7ff0d26ce47269a32fe45dde904cb
Autor:
Gerard Mor, Jordi Vilaplana, Stoyan Danov, Jordi Cipriano, Francesc Solsona, Daniel Chemisana
Publikováno v:
IEEE Access, Vol 6, Pp 71132-71142 (2018)
This paper presents the EMPOWERING project, a Big Data environment aimed at helping domestic customers to save electricity by managing their consumption positively. This is achieved by improving the information received about energy bills and offerin
Externí odkaz:
https://doaj.org/article/c609a847829e4cdc87625fc24ebbf800
Publikováno v:
Energies, Vol 14, Iss 17, p 5430 (2021)
Thermostatic load control systems are widespread in many countries. Since they provide heat for domestic hot water and space heating on a massive scale in the residential sector, the assessment of their energy performance and the effect of different
Externí odkaz:
https://doaj.org/article/0783f687b9aa4393a994cd07a8316a35
Autor:
Benedetto Grillone, Gerard Mor, Stoyan Danov, Jordi Cipriano, Florencia Lazzari, Andreas Sumper
Publikováno v:
Energies, Vol 14, Iss 17, p 5556 (2021)
Interpretable and scalable data-driven methodologies providing high granularity baseline predictions of energy use in buildings are essential for the accurate measurement and verification of energy renovation projects and have the potential of unlock
Externí odkaz:
https://doaj.org/article/b76e64673b214e4a9a7051e9c13bc020
Autor:
Florencia Lazzari, Gerard Mor, Jordi Cipriano, Francesc Solsona, Daniel Chemisana, Daniela Guericke
Publikováno v:
Applied energy, 338:120906. Elsevier
Renewable Energy Communities (REC) have the potential to become a key agent for the energy transition. Since consumers have different consumption patterns depending on their habits, their grouping allows for a better use of the resource. REC provide
Autor:
Francesco Pignatelli, Benedetto Grillone, Florencia Lazzari, Daniel Chemisana, Jordi Cipriano, Giacomo Martirano, Chiara Lodi, Gerard Mor Martinez
Publikováno v:
Energy Reports, Vol 7, Iss, Pp 5667-5684 (2021)
Repositorio Abierto de la UdL
Universitad de Lleida
Repositorio Abierto de la UdL
Universitad de Lleida
A bottom-up electricity characterisation methodology of the building stock at the local level is presented. It is based on the statistical learning analysis of aggregated energy consumption data, weather data, cadastre, and socioeconomic information.
Autor:
Rachel M. Glicksman, Andrew Loblaw, Gerard Morton, Danny Vesprini, Ewa Szumacher, Hans T. Chung, William Chu, Stanley K. Liu, Chia-Lin Tseng, Melanie Davidson, Andrea Deabreu, Alexandre Mamedov, Liying Zhang, Patrick Cheung
Publikováno v:
Clinical and Translational Radiation Oncology, Vol 49, Iss , Pp 100843- (2024)
Background and purpose: Data is needed regarding the use of ultrahypofractionated radiotherapy (UHRT) in the context of prostate cancer elective nodal irradiation (ENI), and how this compares to conventionally fractionated radiotherapy (CFRT) ENI wit
Externí odkaz:
https://doaj.org/article/51b8d796a410414e9346719ea6b1cc28