Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Georgios Stylogiannis"'
Autor:
Georgios Stylogiannis, Oscar Blasco
Publikováno v:
Journal of Mathematical Analysis and Applications. 445:612-630
In this paper we deal with Banach spaces of analytic functions X defined on the unit disk satisfying that R t f ∈ X for any t > 0 and f ∈ X , where R t f ( z ) = f ( e i t z ) . We study the space of functions in X such that ‖ P r ( D f ) ‖ X
Autor:
Georgios Stylogiannis
Publikováno v:
Concrete Operators, Vol 7, Iss 1, Pp 69-80 (2020)
In this paper we study Hausdorff operators on the Bergman spaces $A^{p}(\mathbb{U})$ of the upper half plane.
14 pages
14 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d637ccfdf358edcfd20fff87370ef281
http://arxiv.org/abs/1907.08420
http://arxiv.org/abs/1907.08420
Autor:
Georgios Stylogiannis
Publikováno v:
Bulletin of the Australian Mathematical Society. 94:144-154
We study the strong continuity of semigroups of composition operators on local Dirichlet spaces.
Autor:
Georgios Stylogiannis
Έναυσμα για την παρούσα μελέτη ήταν η σύνδεση της Eικασίας Brennan με σταθμισμένους τελεστές σύνθεσης. Η παρούσα εργασία μπορεί να θεωρηθεί
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::54cc13aec2fca665ffbb5e4211afaeb7
https://doi.org/10.12681/eadd/22079
https://doi.org/10.12681/eadd/22079
For $f$ analytic on the unit disc let $r_t(f)(z)=f(e^{it}z)$ and $f_r(z)=f(rz)$, rotations and dilations respectively. We show that for $f$ in the Bergman space $A^p$ and $0
Comment: 17 pages
Comment: 17 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::146ab80abb7868edf1fb84354e468784
Publikováno v:
Results in Mathematics. 76(4)
We study the quasi-nilpotency of generalized Volterra operators on spaces of power series with Taylor coefficients in weighted $\ell^p$ spaces $1
Comment: 14 pages; The main theorems are the same as in v1, the presentation of the material though
Comment: 14 pages; The main theorems are the same as in v1, the presentation of the material though