Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Georgios Ovakoglou"'
Autor:
Mahlatse Kganyago, Georgios Ovakoglou, Paidamwoyo Mhangara, Clement Adjorlolo, Thomas Alexandridis, Giovanni Laneve, Juan Suarez Beltran
Publikováno v:
GIScience & Remote Sensing, Vol 60, Iss 1 (2023)
Wide field-of-view (FOV) sensors such as Sentinel-2 exhibit per-pixel view and illumination geometry variation that may influence the retrieval accuracy of essential crop biophysical and biochemical variables (BVs) for precision agriculture. However,
Externí odkaz:
https://doaj.org/article/ef88ee8a84564644a73814064334d6d1
Autor:
Thomas K. Alexandridis, Afroditi Alexandra Tamouridou, Xanthoula Eirini Pantazi, Anastasia L. Lagopodi, Javid Kashefi, Georgios Ovakoglou, Vassilios Polychronos, Dimitrios Moshou
Publikováno v:
Sensors, Vol 17, Iss 9, p 2007 (2017)
In the present study, the detection and mapping of Silybum marianum (L.) Gaertn. weed using novelty detection classifiers is reported. A multispectral camera (green-red-NIR) on board a fixed wing unmanned aerial vehicle (UAV) was employed for obtaini
Externí odkaz:
https://doaj.org/article/0b98f2bb1d414330a1e2632cfa07988d
Autor:
Georgios Ovakoglou, Ioannis Navrozidis, Vasileios Pyrgiotis, Nikos Kalatzis, Thomas Alexandridis
Crop development and foliar density as expressed with Leaf Area Index (LAI) is an important source of information for disease prevention. Canopy density in vineyards has been correlated with disease incidence, mainly concerning the impact of high den
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::319f7d7ab7463a065869817d20b14277
https://doi.org/10.5194/egusphere-egu23-12940
https://doi.org/10.5194/egusphere-egu23-12940
Autor:
Xanthoula-Eirini Pantazi, Afroditi-Alexandra Tamouridou, Dimitrios Moshou, Ines Cherif, Georgios Ovakoglou, Xanthi Tseni, Stella Kalaitzopoulou, Spiros Mourelatos, Thomas K. Alexandridis
Publikováno v:
Journal of Applied Remote Sensing. 16
Publikováno v:
Geocarto International, 37(9), 2466-2489
Geocarto International 37 (2022) 9
Geocarto International 37 (2022) 9
Several organizations provide satellite Leaf Area Index (LAI) data regularly, at various scales, at high frequency, but at low spatial resolution. This study attempted to enhance the spatial resolution of the MODIS LAI product to the Landsat resoluti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6fa1f0b3af0623ae129a0cf9b04bb73a
https://research.wur.nl/en/publications/downscaling-of-modis-leaf-area-index-using-landsat-vegetation-ind
https://research.wur.nl/en/publications/downscaling-of-modis-leaf-area-index-using-landsat-vegetation-ind
Publikováno v:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII.
In areas with extensive, nomadic, or transhumant livestock farming, it is important to access regular information on the location of ephemeral surface water bodies. Existing near-real time methods for high-resolution surface water mapping are mainly
Flood disasters cause severe damages to African communities (destroyed infrastructure, submerged fields, loss of life) and have an increasing occurrence under the changing climate. The spatial and temporal resolutions of the Sentinel-1 radar data are
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::257dce6a5d98aefd89d6d62fe8340722
https://doi.org/10.5194/egusphere-egu21-15170
https://doi.org/10.5194/egusphere-egu21-15170
Autor:
Xanthi Tseni, Ines Cherif, Iason Raptis, Xanthoula Eirini Pantazi, Stella Kalaitzopoulou, Thomas Alexandridis, Georgios Ovakoglou, Afroditi-Alexandra Tamouridou, Spiros Mourelatos, Dimitrios Moshou
Publikováno v:
Journal of Applied Remote Sensing. 15
Surface-water body maps are imperative for effective mosquito larvae control. This study aims to select a method for the automatic and regular mapping of surface-water bodies in rice fields and wetlands using Sentinel-1 synthetic aperture radar data.
Autor:
John Odindi, Nosiseko Mashiyi, Paidamwoyo Mhangara, Clement Adjorlolo, Thomas Alexandridis, Georgios Ovakoglou, Mahlatse Kganyago
Publikováno v:
Remote Sensing of Clouds and the Atmosphere XXV
Globally, remotely sensed agricultural monitoring is impeded by cloudy atmospheric conditions, rendering the acquired images useless. In semi-arid landscapes, agricultural production is dominated by rainfed croplands; thus, the majority of planting o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::646d91a2ecd8214798c30aeb08183c01
https://zenodo.org/record/4753622
https://zenodo.org/record/4753622
Publikováno v:
Geocarto International, 35(13), 1385-1399
Geocarto International 35 (2020) 13
Geocarto International 35 (2020) 13
The Leaf Area Index (LAI) is used as input in hydrological and bio-chemical models for the estimation of water-cycle characteristics, agricultural primary production and other processes. Vegetation Indices (VIs) are used to monitor vegetation state a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c6ae3cba81bcc826c31e005c4c61fd4
https://research.wur.nl/en/publications/relationship-between-modis-evi-and-lai-across-time-and-space
https://research.wur.nl/en/publications/relationship-between-modis-evi-and-lai-across-time-and-space