Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Georgios Detorakis"'
Autor:
Sourav Dutta, Georgios Detorakis, Abhishek Khanna, Benjamin Grisafe, Emre Neftci, Suman Datta
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-10 (2022)
Neural sampling machines make use of noise to perform learning. Here, Dutta et al. present a hybrid stochastic synapse composed out of a ferroelectric transistor combined with a stochastic selector exhibiting multiplicative synaptic noise required fo
Externí odkaz:
https://doaj.org/article/d5979bc727ec411d92d5e742328b3579
Autor:
Bruno U. Pedroni, Siddharth Joshi, Stephen R. Deiss, Sadique Sheik, Georgios Detorakis, Somnath Paul, Charles Augustine, Emre O. Neftci, Gert Cauwenberghs
Publikováno v:
Frontiers in Neuroscience, Vol 13 (2019)
Spike-Timing-Dependent Plasticity (STDP) is a bio-inspired local incremental weight update rule commonly used for online learning in spike-based neuromorphic systems. In STDP, the intensity of long-term potentiation and depression in synaptic efficac
Externí odkaz:
https://doaj.org/article/b867aac7b7094b1b98a14a510b0f78fb
Autor:
Georgios Detorakis, Sadique Sheik, Charles Augustine, Somnath Paul, Bruno U. Pedroni, Nikil Dutt, Jeffrey Krichmar, Gert Cauwenberghs, Emre Neftci
Publikováno v:
Frontiers in Neuroscience, Vol 12 (2018)
Embedded, continual learning for autonomous and adaptive behavior is a key application of neuromorphic hardware. However, neuromorphic implementations of embedded learning at large scales that are both flexible and efficient have been hindered by a l
Externí odkaz:
https://doaj.org/article/b53ac9498a37489dbecdfc3023df49cd
Autor:
Nicolas P. Rougier, Konrad Hinsen, Frédéric Alexandre, Thomas Arildsen, Lorena A. Barba, Fabien C.Y. Benureau, C. Titus Brown, Pierre de Buyl, Ozan Caglayan, Andrew P. Davison, Marc-André Delsuc, Georgios Detorakis, Alexandra K. Diem, Damien Drix, Pierre Enel, Benoît Girard, Olivia Guest, Matt G. Hall, Rafael N. Henriques, Xavier Hinaut, Kamil S. Jaron, Mehdi Khamassi, Almar Klein, Tiina Manninen, Pietro Marchesi, Daniel McGlinn, Christoph Metzner, Owen Petchey, Hans Ekkehard Plesser, Timothée Poisot, Karthik Ram, Yoav Ram, Etienne Roesch, Cyrille Rossant, Vahid Rostami, Aaron Shifman, Joseph Stachelek, Marcel Stimberg, Frank Stollmeier, Federico Vaggi, Guillaume Viejo, Julien Vitay, Anya E. Vostinar, Roman Yurchak, Tiziano Zito
Publikováno v:
PeerJ Computer Science, Vol 3, p e142 (2017)
Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed
Externí odkaz:
https://doaj.org/article/55a5db62f618401cbb64c77165d3988b
Publikováno v:
Frontiers in Neuroscience, Vol 11 (2017)
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful ap
Externí odkaz:
https://doaj.org/article/93bd4aaf1c02439ba629758f00295ab7
Autor:
Georgios Detorakis, Nicolas P. Rougier
Publikováno v:
Neural Computation
Neural Computation, Massachusetts Institute of Technology Press (MIT Press), In press
Neural Computation, inPress, ⟨10.1162/neco_a_01406⟩
Neural Computation, Massachusetts Institute of Technology Press (MIT Press), In press
Neural Computation, inPress, ⟨10.1162/neco_a_01406⟩
We propose a variation of the self organizing map algorithm by considering the random placement of neurons on a two-dimensional manifold, following a blue noise distribution from which various topologies can be derived. These topologies possess rando
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35dc0915c2ce6899e24f9ca7539e405d
Autor:
Gert Cauwenberghs, Somnath Paul, Sadique Sheik, Emre Neftci, Bruno U. Pedroni, Georgios Detorakis, Siddharth Joshi, Stephen R. Deiss, Charles Augustine
Publikováno v:
Frontiers in Neuroscience, Vol 13 (2019)
Frontiers in Neuroscience
Frontiers in Neuroscience
Spike-Timing-Dependent Plasticity (STDP) is a bio-inspired local incremental weight update rule commonly used for online learning in spike-based neuromorphic systems. In STDP, the intensity of long-term potentiation and depression in synaptic efficac
Publikováno v:
Delays and Interconnections: Methodology, Algorithms and Applications ISBN: 9783030115531
This chapter addresses the robust stabilization of neuronal populations modeled as delayed neural fields. These models are integro-differential equations representing the spatio-temporal activity of cerebral structures and take into account the non-i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1fec85f38f30f3f66bb84dd27742d62a
https://doi.org/10.1007/978-3-030-11554-8_5
https://doi.org/10.1007/978-3-030-11554-8_5
Autor:
Andrew Burton, Georgios Detorakis
Publikováno v:
Journal of Open Source Software. 4:1839
Publikováno v:
Detorakis, G; Bartley, T; & Neftci, E. (2018). Contrastive Hebbian Learning with Random Feedback Weights. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/4039t7rx
Neural networks are commonly trained to make predictions through learning algorithms. Contrastive Hebbian learning, which is a powerful rule inspired by gradient backpropagation, is based on Hebb's rule and the contrastive divergence algorithm. It op
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::051f04944faf59812a1218614bfc512f
http://www.escholarship.org/uc/item/4039t7rx
http://www.escholarship.org/uc/item/4039t7rx