Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Georgescu, Raluca Mihaela"'
Numerical investigation of the Bautin bifurcation in a delay differential equation modeling leukemia
In a previous work we investigated the existence of Hopf degenerate bifurcation points for a differential delay equation modeling leukemia and we actually found Hopf points of codimension two for the considered problem. If around the parameters corre
Externí odkaz:
http://arxiv.org/abs/1208.1707
This paper continues the work contained in two previous papers, devoted to the study of the dynamical system generated by a delay differential equation that models leukemia. Here our aim is to identify degenerate Hopf bifurcation points. By using an
Externí odkaz:
http://arxiv.org/abs/1205.3917
Publikováno v:
"Journal of Middle Volga Mathematical Society", 11, 2(2009), 146-157
We consider a delay differential equation that occurs in the study of chronic myelogenous leukemia. After shortly reminding some previous results concerning the stability of equilibrium solutions, we concentrate on the study of stability of periodic
Externí odkaz:
http://arxiv.org/abs/1001.5354
Publikováno v:
In Nonlinear Analysis April 2013 82:142-157
Autor:
Gheldiu, Camelia1 camelia.gheldiu@upit.ro, Georgescu, Raluca-Mihaela1 raluca.georgescu@upit.ro
Publikováno v:
ROMAI Journal. 2014, Vol. 10 Issue 2, p127-135. 9p.
Autor:
Gheldiu, Camelia1, Georgescu, Raluca-Mihaela1
Publikováno v:
ROMAI Journal. Dec2011, Vol. 7 Issue 2, p71-78. 9p.
Publikováno v:
AAPP | Physical, Mathematical, and Natural Sciences; Vol 84 (2006)
Atti della Accademia Peloritana dei Pericolanti. Classe di Scienze Fisiche, Matematiche e Naturali; Vol 84 (2006)
Atti della Accademia Peloritana dei Pericolanti. Classe di Scienze Fisiche, Matematiche e Naturali; Vol 84 (2006)
A predator-prey model formerly proposed by A. Bazykin et al. [Bifurcation diagrams of planar dynamical systems (1985)] is analyzed in the case when two of the four parameters are kept fixed. Dynamics and bifurcation results are deduced by using the m