Zobrazeno 1 - 10
of 15
pro vyhledávání: '"George V. Filippenko"'
Publikováno v:
Advances in Mechanical Engineering ISBN: 9783031300264
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::15cd82076702205388046d1246d07298
https://doi.org/10.1007/978-3-031-30027-1_21
https://doi.org/10.1007/978-3-031-30027-1_21
Publikováno v:
Lecture Notes in Mechanical Engineering ISBN: 9783030921439
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3a4063bd16da18c8a677858867d52084
https://doi.org/10.1007/978-3-030-92144-6_19
https://doi.org/10.1007/978-3-030-92144-6_19
Publikováno v:
Advances in Mechanical Engineering ISBN: 9783030915520
Advances in Mechanical Engineering
Advances in Mechanical Engineering
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8923ab434815169676731d0a6bd53c18
https://doi.org/10.1007/978-3-030-91553-7_9
https://doi.org/10.1007/978-3-030-91553-7_9
Publikováno v:
Advances in Mechanical Engineering ISBN: 9783030620615
In the paper the oscillations of a circular cylindrical shell of the Kirchhoff – Love type with additional inertia in the form of a “mass belt” of zero width is considered. The dispersion equation is obtained and the nature of the dispersion cu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7d87f3f872007f369486bf68c7c61542
https://doi.org/10.1007/978-3-030-62062-2_9
https://doi.org/10.1007/978-3-030-62062-2_9
Autor:
George V. Filippenko
Publikováno v:
2019 Days on Diffraction (DD).
The problem of free harmonic vibrations of an infinite circular cylindrical shell with spring-type boundary condition on the outer surface, analogous to Winkler foundation for a plate, is studied. The shell is considered of Kirchhoff–Love type. The
Autor:
George V. Filippenko
Publikováno v:
Advances in Mechanical Engineering ISBN: 9783030119805
The wave processes in the infinite and finite periodic shells (cylinder shell, beam, and rod) are explored. Look-alike systems can model different elements of buildings, hydro-technical constructions, bridges, oil rigs, different pipes, etc. The stat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::28870ba9f45389d1b65962e34b893840
https://doi.org/10.1007/978-3-030-11981-2_2
https://doi.org/10.1007/978-3-030-11981-2_2
Autor:
Maria V. Wilde, George V. Filippenko
Publikováno v:
2018 Days on Diffraction (DD).
Backward waves (wave with opposite signs of the phase and group velocities) in a circular cylindrical shell filled with an acoustic fluid are studied. Three theories are applied to describe the motions of the shell: Kirchhoff–Love theory, refined s
Autor:
George V. Filippenko
Publikováno v:
Advances in Mechanical Engineering ISBN: 9783319729282
The problem of joint oscillations of the infinite thin cylindrical shell filled with acoustical liquid of the Kirchhoff–Love type is considered. Free harmonic vibrations of the system are found. Propagating waves are analyzed. Much attention is giv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8c2d215b4eb0e148e82a736045cbf4b8
https://doi.org/10.1007/978-3-319-72929-9_11
https://doi.org/10.1007/978-3-319-72929-9_11
Autor:
George V. Filippenko
Publikováno v:
2016 Days on Diffraction (DD).
The problem of oscillations of the systems containing pipelines filled with the liquid is one of the topical problems of modern engineering. It is important to estimate parameters of vibrations and acoustical fields of such objects, in particular, to
Autor:
George V. Filippenko
Publikováno v:
Advances in Mechanical Engineering ISBN: 9783319295787
We consider here the free oscillations of a system of concentric cylindrical shells partially submerged in a fluid and vertically attached to a reservoir bottom. The statement of the problem is a rigorous one. The dispersion equation and reflection c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::85dd634a304e13c451b5e71216c09d64
https://doi.org/10.1007/978-3-319-29579-4_12
https://doi.org/10.1007/978-3-319-29579-4_12