Zobrazeno 1 - 10
of 16
pro vyhledávání: '"George Shakan"'
Autor:
George Shakan, Andrew Granville
Publikováno v:
Acta Mathematica Hungarica. 161:700-718
Let A be a finite subset of $$\mathbb{Z}^n$$ , which generates $$\mathbb{Z}^n$$ additively. We provide a precise description of the N-fold sumsets NA for N sufficiently large, with some explicit bounds on “sufficiently large.”
Publikováno v:
Analysis at Large ISBN: 9783031053306
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f7a980a421f604e30f4d87fb3762432b
https://doi.org/10.1007/978-3-031-05331-3_6
https://doi.org/10.1007/978-3-031-05331-3_6
Publikováno v:
Journal of Mathematical Analysis and Applications. 518:126784
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030679958
We show that if \(A=\{a_1< a_2< \ldots < a_k\}\) is a set of real numbers such that the differences of the consecutive elements are distinct, then for and finite \(B \subset \mathbb {R}\), $$ |A+B|\gg |A|^{1/2}|B|. $$ The bound is tight up to the con
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ed00aae1292838d0c15f13bf78cd2715
https://doi.org/10.1007/978-3-030-67996-5_24
https://doi.org/10.1007/978-3-030-67996-5_24
Autor:
Robert J. Lemke Oliver, Ayla Gafni, David Lowry-Duda, George Shakan, Theresa C. Anderson, Ruixiang Zhang
We study two polynomial counting questions in arithmetic statistics via a combination of Fourier analytic and arithmetic methods. First, we obtain new quantitative forms of Hilbert's Irreducibility Theorem for degree $n$ polynomials $f$ with $\mathrm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6cd702676cb3c80d265c2500b6f6dd1f
Autor:
George Shakan
Let $A \subset \mathbb{F}_p$ with $|A| > 1$. We show there is a $d \in \mathbb{F}_p^{\times}$ such that $d \cdot A$ contains a gap of size at least $2p/ |A| - 2 $.
3 pages
3 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ad99ddef209ae2a857143d1fd4767c8b
Publikováno v:
Mathematische Annalen
We obtain asymptotics for sums of the form $$\begin{aligned} \sum _{n=1}^P e\left( {\alpha }_k\,n^k\,+\,{\alpha }_1 n\right) , \end{aligned}$$ ∑ n = 1 P e α k n k + α 1 n , involving lower order main terms. As an application, we show that for alm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2e04e9db692898fe58153599dc8b454
Publikováno v:
The Quarterly Journal of Mathematics. 68:729-758
Fix $k$ a positive integer, and let $\ell$ be coprime to $k$. Let $p(k,\ell)$ denote the smallest prime equivalent to $\ell \pmod{k}$, and set $P(k)$ to be the maximum of all the $p(k,\ell)$. We seek lower bounds for $P(k)$. In particular, we show th
Publikováno v:
The Electronic Journal of Combinatorics. 26
The Van der Waerden number $W(k,r)$ denotes the smallest $n$ such that whenever $[n]$ is $r$–colored there exists a monochromatic arithmetic progression of length $k$. Similarly, the Hilbert cube number $h(k,r)$ denotes the smallest $n$ such that w
Autor:
M. B. Erdoğan, George Shakan
Publikováno v:
Selecta Mathematica. 25
We use exponential sums to study the fractal dimension of the graphs of solutions to linear dispersive PDE. Our techniques apply to Schrodinger, Airy, Boussinesq, the fractional Schrodinger, and the gravity and gravity–capillary water wave equation