Zobrazeno 1 - 10
of 132
pro vyhledávání: '"George M. Bergman"'
Autor:
George M. Bergman
Publikováno v:
Communications in Algebra. 49:3760-3776
For which groups $G$ is it true that for all fields $k$, every non-monomial element of the group algebra $k\,G$ generates a proper $2$-sided ideal? The only groups for which we know this are the torsion-free abelian groups. We would like to know whet
Autor:
George M. Bergman
Publikováno v:
Bergman, George M. (2019). Some results relevant to embeddability of rings (especially group algebras) in division rings. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/19t4x67b
P. M. Cohn showed in 1971 that given a ring $R$, to describe, up to isomorphism, a division ring $D$ generated by a homomorphic image of $R$ is equivalent to specifying the set of square matrices over $R$ which map to singular matrices over $D,$ and
Autor:
George M. Bergman
F. Wehrung has asked: Given a family $\mathcal{C}$ of subsets of a set $\Omega$, under what conditions will there exist a total ordering on $\Omega$ under which every member of $\mathcal{C}$ is convex? Note that if $A$ and $B$ are nondisjoint convex
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c7f4581a61bc472cea24a46f21796c7c
http://arxiv.org/abs/2011.07399
http://arxiv.org/abs/2011.07399
Autor:
George M. Bergman
We review the definition of a quandle, and in particular of the core quandle $\mathrm{Core}(G)$ of a group $G$, which consists of the underlying set of $G$, with the binary operation $x\lhd y = x y^{-1} x$. This is an involutory quandle, i.e., satisf
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b0b9f7e8bb3a22e79f93b5086839b98
Autor:
George M. Bergman
Publikováno v:
Algebra Universalis, vol 79, iss 2
Algebra universalis, vol 79, iss 2
Algebra universalis, vol 79, iss 2
Marek Kuczma asked in 1980 whether for every positive integer $n,$ there exists a subsemigroup $M$ of a group $G,$ such that $G$ is equal to the $n$-fold product $M\,M^{-1} M\,M^{-1} \dots\,M^{(-1)^{n-1}},$ but not to any proper initial subproduct of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::50bd47bd2640eeb871688f29a38bab2a
https://escholarship.org/uc/item/6kk7j317
https://escholarship.org/uc/item/6kk7j317
Autor:
George M. Bergman
Publikováno v:
Publicacions Matemàtiques; Vol. 62, Núm. 1 (2018); p. 253-284
Publicacions Matemàtiques, vol 62, iss 1
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Publ. Mat. 62, no. 1 (2018), 253-284
Publicacions Matematiques, vol 62, iss 1
Recercat. Dipósit de la Recerca de Catalunya
instname
Bergman, GM. (2018). Strong inner inverses in endomorphism rings of vector spaces. Publicacions Matematiques, 62(1), 253-284. doi: 10.5565/PUBLMAT6211812. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/3gz4p808
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matemàtiques, vol 62, iss 1
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Publ. Mat. 62, no. 1 (2018), 253-284
Publicacions Matematiques, vol 62, iss 1
Recercat. Dipósit de la Recerca de Catalunya
instname
Bergman, GM. (2018). Strong inner inverses in endomorphism rings of vector spaces. Publicacions Matematiques, 62(1), 253-284. doi: 10.5565/PUBLMAT6211812. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/3gz4p808
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
For $V$ a vector space over a field, or more generally, over a division ring, it is well-known that every $x\in\mathrm{End}(V)$ has an inner inverse, i.e., an element $y\in\mathrm{End}(V)$ satisfying $xyx=x.$ We show here that a large class of such $
Autor:
George M. Bergman
Publikováno v:
Categories and General Algebraic Structures with Applications, vol 11, iss SpecialIssue
Categories and General Algebraic Structures with Applications, Vol 11, Iss Special Issue Dedicated to Prof. George A. Gratzer, Pp 149-168 (2019)
Categories and General Algebraic Structures with Applications, Vol 11, Iss Special Issue Dedicated to Prof. George A. Gratzer, Pp 149-168 (2019)
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (e.g., $\{0\})$ that are closed under the natural metric, but has no prime ideals closed under that metric; hence closed radical i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::03c72e1695c778d96f670353b5998a2e
Autor:
George M. Bergman
Publikováno v:
Semigroup Forum. 89:293-335
Several authors have studied the question of when the monoid ring DM of a monoid M over a ring D is a right and/or left fir (free ideal ring), a semifir, or a 2-fir (definitions recalled in section 1). It is known that for M nontrivial, a necessary c
Autor:
George M. Bergman, Trevor Stuart
Publikováno v:
Biographical Memoirs of Fellows of the Royal Society. 60:127-150
Paul Cohn was born in Hamburg, where he lived until he was 15 years of age. However, in 1939, after the rise of the Nazis and the growing persecution of the Jews, his parents, James and Julia Cohn, sent him to England by Kindertransport. They remaine
Autor:
George M. Bergman
Publikováno v:
Algebraic and Geometric Topology, vol 17, iss 1
Algebr. Geom. Topol. 17, no. 1 (2017), 439-486
Bergman, GM. (2017). Simplicial complexes with lattice structures. Algebraic and Geometric Topology, 17(1), 439-486. doi: 10.2140/agt.2017.17.439. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/1qn4m2fq
Algebraic & Geometric Topology, vol 17, iss 1
Algebr. Geom. Topol. 17, no. 1 (2017), 439-486
Bergman, GM. (2017). Simplicial complexes with lattice structures. Algebraic and Geometric Topology, 17(1), 439-486. doi: 10.2140/agt.2017.17.439. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/1qn4m2fq
Algebraic & Geometric Topology, vol 17, iss 1
If $L$ is a finite lattice, we show that there is a natural topological lattice structure on the geometric realization of its order complex $\Delta(L)$ (definition recalled). Lattice-theoretically, the resulting object is a subdirect product of copie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f6449953613a2ed9fa590e1c661ed975
https://escholarship.org/uc/item/1qn4m2fq
https://escholarship.org/uc/item/1qn4m2fq